Shape optimization of tumbling wings
Tumbling wings are one of Nature’s many tricks to enhance the dispersal efficiency of flying seedpods. However, the interplay between the seedpod morphology and its dispersal range is not well understood. Here, we investigate the question of how planform geometry affects two-dimensional tumbling fli...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2020-04, Vol.889, Article A9 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 889 |
creator | Vincent, Lionel Liu, Yucen Kanso, Eva |
description | Tumbling wings are one of Nature’s many tricks to enhance the dispersal efficiency of flying seedpods. However, the interplay between the seedpod morphology and its dispersal range is not well understood. Here, we investigate the question of how planform geometry affects two-dimensional tumbling flight by designing wings of various planform and length-to-width ratios. Through a combination of experiments and modelling, we compare the wings’ flight characteristics, specifically the rotation rate and descent angle, both of which are key parameters in the wing’s ability to drift away from its initial location. Starting from the quasi-steady flight model proposed by Wang
et al.
(
J. Fluid Mech.
, vol. 733, 2013, pp. 650–679), we derive theoretical predictions of the performance of wings of arbitrary planform. Upon further simplifications, we arrive at a performance index based purely on wing geometry and we use it to obtain theoretically optimal wing shapes. These optimal predictions are then tested experimentally. We conclude by discussing the advantages and limitations of the theoretical approach and its utility in informing the design of aerodynamically efficient tumbling wings. |
doi_str_mv | 10.1017/jfm.2020.88 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2395127342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395127342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-d87c3db82a4120d79bdd9dfda6361451f9d3ebcfe795628fd1410c05849c59233</originalsourceid><addsrcrecordid>eNotkEtLxDAUhYMoWEdX_oGC7qT13jyaZCmDLxhwoa5Dmoe2TB82HUR_vR3GzTmbw_ngI-QSoURAedvGrqRAoVTqiGTIK13IiotjkgFQWiBSOCVnKbUAyEDLjFy_ftox5MM4N13za-dm6PMh5vOuq7dN_5F_L5HOyUm02xQu_ntF3h_u39ZPxebl8Xl9tykcrXAuvJKO-VpRyxeQl7r2XvvobcUq5AKj9izULgapRUVV9MgRHAjFtROaMrYiV4ffcRq-diHNph12U78gDWVaIJWM02V1c1i5aUhpCtGMU9PZ6ccgmL0Gs2gwew1GKfYHUk5Onw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395127342</pqid></control><display><type>article</type><title>Shape optimization of tumbling wings</title><source>Cambridge Journals Online</source><creator>Vincent, Lionel ; Liu, Yucen ; Kanso, Eva</creator><creatorcontrib>Vincent, Lionel ; Liu, Yucen ; Kanso, Eva</creatorcontrib><description>Tumbling wings are one of Nature’s many tricks to enhance the dispersal efficiency of flying seedpods. However, the interplay between the seedpod morphology and its dispersal range is not well understood. Here, we investigate the question of how planform geometry affects two-dimensional tumbling flight by designing wings of various planform and length-to-width ratios. Through a combination of experiments and modelling, we compare the wings’ flight characteristics, specifically the rotation rate and descent angle, both of which are key parameters in the wing’s ability to drift away from its initial location. Starting from the quasi-steady flight model proposed by Wang
et al.
(
J. Fluid Mech.
, vol. 733, 2013, pp. 650–679), we derive theoretical predictions of the performance of wings of arbitrary planform. Upon further simplifications, we arrive at a performance index based purely on wing geometry and we use it to obtain theoretically optimal wing shapes. These optimal predictions are then tested experimentally. We conclude by discussing the advantages and limitations of the theoretical approach and its utility in informing the design of aerodynamically efficient tumbling wings.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2020.88</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Dispersal ; Dispersion ; Flight ; Flight characteristics ; Fluid mechanics ; Geometry ; Performance indices ; Planforms ; Ratios ; Shape optimization ; Tumbling ; Velocity ; Wings</subject><ispartof>Journal of fluid mechanics, 2020-04, Vol.889, Article A9</ispartof><rights>The Author(s), 2020. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-d87c3db82a4120d79bdd9dfda6361451f9d3ebcfe795628fd1410c05849c59233</citedby><cites>FETCH-LOGICAL-c261t-d87c3db82a4120d79bdd9dfda6361451f9d3ebcfe795628fd1410c05849c59233</cites><orcidid>0000-0003-0336-585X ; 0000-0002-5147-9475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Vincent, Lionel</creatorcontrib><creatorcontrib>Liu, Yucen</creatorcontrib><creatorcontrib>Kanso, Eva</creatorcontrib><title>Shape optimization of tumbling wings</title><title>Journal of fluid mechanics</title><description>Tumbling wings are one of Nature’s many tricks to enhance the dispersal efficiency of flying seedpods. However, the interplay between the seedpod morphology and its dispersal range is not well understood. Here, we investigate the question of how planform geometry affects two-dimensional tumbling flight by designing wings of various planform and length-to-width ratios. Through a combination of experiments and modelling, we compare the wings’ flight characteristics, specifically the rotation rate and descent angle, both of which are key parameters in the wing’s ability to drift away from its initial location. Starting from the quasi-steady flight model proposed by Wang
et al.
(
J. Fluid Mech.
, vol. 733, 2013, pp. 650–679), we derive theoretical predictions of the performance of wings of arbitrary planform. Upon further simplifications, we arrive at a performance index based purely on wing geometry and we use it to obtain theoretically optimal wing shapes. These optimal predictions are then tested experimentally. We conclude by discussing the advantages and limitations of the theoretical approach and its utility in informing the design of aerodynamically efficient tumbling wings.</description><subject>Dispersal</subject><subject>Dispersion</subject><subject>Flight</subject><subject>Flight characteristics</subject><subject>Fluid mechanics</subject><subject>Geometry</subject><subject>Performance indices</subject><subject>Planforms</subject><subject>Ratios</subject><subject>Shape optimization</subject><subject>Tumbling</subject><subject>Velocity</subject><subject>Wings</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkEtLxDAUhYMoWEdX_oGC7qT13jyaZCmDLxhwoa5Dmoe2TB82HUR_vR3GzTmbw_ngI-QSoURAedvGrqRAoVTqiGTIK13IiotjkgFQWiBSOCVnKbUAyEDLjFy_ftox5MM4N13za-dm6PMh5vOuq7dN_5F_L5HOyUm02xQu_ntF3h_u39ZPxebl8Xl9tykcrXAuvJKO-VpRyxeQl7r2XvvobcUq5AKj9izULgapRUVV9MgRHAjFtROaMrYiV4ffcRq-diHNph12U78gDWVaIJWM02V1c1i5aUhpCtGMU9PZ6ccgmL0Gs2gwew1GKfYHUk5Onw</recordid><startdate>20200425</startdate><enddate>20200425</enddate><creator>Vincent, Lionel</creator><creator>Liu, Yucen</creator><creator>Kanso, Eva</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-0336-585X</orcidid><orcidid>https://orcid.org/0000-0002-5147-9475</orcidid></search><sort><creationdate>20200425</creationdate><title>Shape optimization of tumbling wings</title><author>Vincent, Lionel ; Liu, Yucen ; Kanso, Eva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-d87c3db82a4120d79bdd9dfda6361451f9d3ebcfe795628fd1410c05849c59233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Dispersal</topic><topic>Dispersion</topic><topic>Flight</topic><topic>Flight characteristics</topic><topic>Fluid mechanics</topic><topic>Geometry</topic><topic>Performance indices</topic><topic>Planforms</topic><topic>Ratios</topic><topic>Shape optimization</topic><topic>Tumbling</topic><topic>Velocity</topic><topic>Wings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vincent, Lionel</creatorcontrib><creatorcontrib>Liu, Yucen</creatorcontrib><creatorcontrib>Kanso, Eva</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vincent, Lionel</au><au>Liu, Yucen</au><au>Kanso, Eva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shape optimization of tumbling wings</atitle><jtitle>Journal of fluid mechanics</jtitle><date>2020-04-25</date><risdate>2020</risdate><volume>889</volume><artnum>A9</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Tumbling wings are one of Nature’s many tricks to enhance the dispersal efficiency of flying seedpods. However, the interplay between the seedpod morphology and its dispersal range is not well understood. Here, we investigate the question of how planform geometry affects two-dimensional tumbling flight by designing wings of various planform and length-to-width ratios. Through a combination of experiments and modelling, we compare the wings’ flight characteristics, specifically the rotation rate and descent angle, both of which are key parameters in the wing’s ability to drift away from its initial location. Starting from the quasi-steady flight model proposed by Wang
et al.
(
J. Fluid Mech.
, vol. 733, 2013, pp. 650–679), we derive theoretical predictions of the performance of wings of arbitrary planform. Upon further simplifications, we arrive at a performance index based purely on wing geometry and we use it to obtain theoretically optimal wing shapes. These optimal predictions are then tested experimentally. We conclude by discussing the advantages and limitations of the theoretical approach and its utility in informing the design of aerodynamically efficient tumbling wings.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2020.88</doi><orcidid>https://orcid.org/0000-0003-0336-585X</orcidid><orcidid>https://orcid.org/0000-0002-5147-9475</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2020-04, Vol.889, Article A9 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_2395127342 |
source | Cambridge Journals Online |
subjects | Dispersal Dispersion Flight Flight characteristics Fluid mechanics Geometry Performance indices Planforms Ratios Shape optimization Tumbling Velocity Wings |
title | Shape optimization of tumbling wings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A14%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shape%20optimization%20of%20tumbling%20wings&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Vincent,%20Lionel&rft.date=2020-04-25&rft.volume=889&rft.artnum=A9&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2020.88&rft_dat=%3Cproquest_cross%3E2395127342%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395127342&rft_id=info:pmid/&rfr_iscdi=true |