Outstanding Photocurrent Density and Incident Photon‐to‐Current Conversion Efficiency of Liquid‐State NiO Perovskite‐Sensitized Solar Cells

The efficiency and photocurrent density reported for p‐type‐sensitized solar cells up to now are still lagging behind that of the n‐type counterparts, limiting the successful development of p–n tandem cells. To circumvent this issue, NiO thin film is fabricated by the aerosol‐assisted chemical vapor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2020-04, Vol.217 (8), p.n/a
Hauptverfasser: Alessa, Hussain, Noh, Mohamad Firdaus Mohamad, Mumthas, Inzamam Nawas Nawas, Wijayantha, Kahagala Gamage Upul, Teridi, Mohd Asri Mat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page
container_title Physica status solidi. A, Applications and materials science
container_volume 217
creator Alessa, Hussain
Noh, Mohamad Firdaus Mohamad
Mumthas, Inzamam Nawas Nawas
Wijayantha, Kahagala Gamage Upul
Teridi, Mohd Asri Mat
description The efficiency and photocurrent density reported for p‐type‐sensitized solar cells up to now are still lagging behind that of the n‐type counterparts, limiting the successful development of p–n tandem cells. To circumvent this issue, NiO thin film is fabricated by the aerosol‐assisted chemical vapor deposition (AACVD) technique and used in p‐type solar cells. A systematic study is conducted to comprehend the correlation between NiO thickness and the power conversion efficiency (PCE) of liquid‐state NiO‐based sensitized solar cells. By carefully designing the cell components, this type of device demonstrates the highest photocurrent density (Jsc) exceeding 18 mA cm−2 when using iodine/triiodide as the redox shuttle matching the one produced by the TiO2 counterpart. This is accomplished by 1) using the AACVD technique for the one‐step deposition of compact and mesoporous NiO electrodes, 2) optimizing the thickness of the NiO layer through controlling the deposition time, and 3) adopting methylammonium lead iodide (CH3NH3PbI3) as a light harvester prepared via a sequential deposition method. Compact and mesoporous films based on NiO are simultaneously prepared via the single‐step aerosol‐assisted chemical vapor deposition. The use of NiO with an appropriate film thickness as the photocathode in liquid‐state perovskite‐sensitized solar cells leads to a remarkably high photocurrent density (JSC). The outstanding JSC is benefited from the impressive incident photon‐to‐current conversion efficiency.
doi_str_mv 10.1002/pssa.201900607
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2394762765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2394762765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3567-acd7a44ebae9d70fc3c1f9c69fadfd11c384d4f279ba8484ef0cd259e7ff56e03</originalsourceid><addsrcrecordid>eNqFkE1OwzAQhSMEEr9b1pZYp9iJE8dLFApUqmilwjoy9hgMwW5tp6isOAISN-QkpBTBks3M6M33ZqSXJMcEDwjG2ek8BDHIMOEYl5htJXukKrO0zAnf_p0x3k32Q3jEmBaUkb3kY9LFEIVVxt6j6YOLTnbeg43oHGwwcYX6HRpZadRa_Cbs59t7dH2pf9Da2SX4YJxFQ62NNGDlCjmNxmbRGdWTsygioGszQVPwbhmeTIS1_P3DvIJCM9cKj2po23CY7GjRBjj66QfJ7cXwpr5Kx5PLUX02TmVelCwVUjFBKdwJ4IphLXNJNJcl10JpRYjMK6qozhi_ExWtKGgsVVZwYFoXJeD8IDnZ3J17t-ggxObRdd72L5ss55SVGSuLnhpsKOldCB50M_fmWfhVQ3CzDr5ZB9_8Bt8b-MbwYlpY_UM309ns7M_7BV4bkEc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2394762765</pqid></control><display><type>article</type><title>Outstanding Photocurrent Density and Incident Photon‐to‐Current Conversion Efficiency of Liquid‐State NiO Perovskite‐Sensitized Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Alessa, Hussain ; Noh, Mohamad Firdaus Mohamad ; Mumthas, Inzamam Nawas Nawas ; Wijayantha, Kahagala Gamage Upul ; Teridi, Mohd Asri Mat</creator><creatorcontrib>Alessa, Hussain ; Noh, Mohamad Firdaus Mohamad ; Mumthas, Inzamam Nawas Nawas ; Wijayantha, Kahagala Gamage Upul ; Teridi, Mohd Asri Mat</creatorcontrib><description>The efficiency and photocurrent density reported for p‐type‐sensitized solar cells up to now are still lagging behind that of the n‐type counterparts, limiting the successful development of p–n tandem cells. To circumvent this issue, NiO thin film is fabricated by the aerosol‐assisted chemical vapor deposition (AACVD) technique and used in p‐type solar cells. A systematic study is conducted to comprehend the correlation between NiO thickness and the power conversion efficiency (PCE) of liquid‐state NiO‐based sensitized solar cells. By carefully designing the cell components, this type of device demonstrates the highest photocurrent density (Jsc) exceeding 18 mA cm−2 when using iodine/triiodide as the redox shuttle matching the one produced by the TiO2 counterpart. This is accomplished by 1) using the AACVD technique for the one‐step deposition of compact and mesoporous NiO electrodes, 2) optimizing the thickness of the NiO layer through controlling the deposition time, and 3) adopting methylammonium lead iodide (CH3NH3PbI3) as a light harvester prepared via a sequential deposition method. Compact and mesoporous films based on NiO are simultaneously prepared via the single‐step aerosol‐assisted chemical vapor deposition. The use of NiO with an appropriate film thickness as the photocathode in liquid‐state perovskite‐sensitized solar cells leads to a remarkably high photocurrent density (JSC). The outstanding JSC is benefited from the impressive incident photon‐to‐current conversion efficiency.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.201900607</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>aerosol-assisted chemical vapor deposition ; Chemical vapor deposition ; Correlation analysis ; Density ; Efficiency ; Energy conversion efficiency ; Harvesters ; Iodine ; Nickel oxides ; NiO ; Perovskites ; Photoelectric effect ; Photoelectric emission ; Photovoltaic cells ; photovoltaics ; Solar cells ; Spacecraft components ; Thickness ; Thin films ; Titanium dioxide</subject><ispartof>Physica status solidi. A, Applications and materials science, 2020-04, Vol.217 (8), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3567-acd7a44ebae9d70fc3c1f9c69fadfd11c384d4f279ba8484ef0cd259e7ff56e03</citedby><cites>FETCH-LOGICAL-c3567-acd7a44ebae9d70fc3c1f9c69fadfd11c384d4f279ba8484ef0cd259e7ff56e03</cites><orcidid>0000-0001-5675-1733</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.201900607$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.201900607$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Alessa, Hussain</creatorcontrib><creatorcontrib>Noh, Mohamad Firdaus Mohamad</creatorcontrib><creatorcontrib>Mumthas, Inzamam Nawas Nawas</creatorcontrib><creatorcontrib>Wijayantha, Kahagala Gamage Upul</creatorcontrib><creatorcontrib>Teridi, Mohd Asri Mat</creatorcontrib><title>Outstanding Photocurrent Density and Incident Photon‐to‐Current Conversion Efficiency of Liquid‐State NiO Perovskite‐Sensitized Solar Cells</title><title>Physica status solidi. A, Applications and materials science</title><description>The efficiency and photocurrent density reported for p‐type‐sensitized solar cells up to now are still lagging behind that of the n‐type counterparts, limiting the successful development of p–n tandem cells. To circumvent this issue, NiO thin film is fabricated by the aerosol‐assisted chemical vapor deposition (AACVD) technique and used in p‐type solar cells. A systematic study is conducted to comprehend the correlation between NiO thickness and the power conversion efficiency (PCE) of liquid‐state NiO‐based sensitized solar cells. By carefully designing the cell components, this type of device demonstrates the highest photocurrent density (Jsc) exceeding 18 mA cm−2 when using iodine/triiodide as the redox shuttle matching the one produced by the TiO2 counterpart. This is accomplished by 1) using the AACVD technique for the one‐step deposition of compact and mesoporous NiO electrodes, 2) optimizing the thickness of the NiO layer through controlling the deposition time, and 3) adopting methylammonium lead iodide (CH3NH3PbI3) as a light harvester prepared via a sequential deposition method. Compact and mesoporous films based on NiO are simultaneously prepared via the single‐step aerosol‐assisted chemical vapor deposition. The use of NiO with an appropriate film thickness as the photocathode in liquid‐state perovskite‐sensitized solar cells leads to a remarkably high photocurrent density (JSC). The outstanding JSC is benefited from the impressive incident photon‐to‐current conversion efficiency.</description><subject>aerosol-assisted chemical vapor deposition</subject><subject>Chemical vapor deposition</subject><subject>Correlation analysis</subject><subject>Density</subject><subject>Efficiency</subject><subject>Energy conversion efficiency</subject><subject>Harvesters</subject><subject>Iodine</subject><subject>Nickel oxides</subject><subject>NiO</subject><subject>Perovskites</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photovoltaic cells</subject><subject>photovoltaics</subject><subject>Solar cells</subject><subject>Spacecraft components</subject><subject>Thickness</subject><subject>Thin films</subject><subject>Titanium dioxide</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAQhSMEEr9b1pZYp9iJE8dLFApUqmilwjoy9hgMwW5tp6isOAISN-QkpBTBks3M6M33ZqSXJMcEDwjG2ek8BDHIMOEYl5htJXukKrO0zAnf_p0x3k32Q3jEmBaUkb3kY9LFEIVVxt6j6YOLTnbeg43oHGwwcYX6HRpZadRa_Cbs59t7dH2pf9Da2SX4YJxFQ62NNGDlCjmNxmbRGdWTsygioGszQVPwbhmeTIS1_P3DvIJCM9cKj2po23CY7GjRBjj66QfJ7cXwpr5Kx5PLUX02TmVelCwVUjFBKdwJ4IphLXNJNJcl10JpRYjMK6qozhi_ExWtKGgsVVZwYFoXJeD8IDnZ3J17t-ggxObRdd72L5ss55SVGSuLnhpsKOldCB50M_fmWfhVQ3CzDr5ZB9_8Bt8b-MbwYlpY_UM309ns7M_7BV4bkEc</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Alessa, Hussain</creator><creator>Noh, Mohamad Firdaus Mohamad</creator><creator>Mumthas, Inzamam Nawas Nawas</creator><creator>Wijayantha, Kahagala Gamage Upul</creator><creator>Teridi, Mohd Asri Mat</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5675-1733</orcidid></search><sort><creationdate>202004</creationdate><title>Outstanding Photocurrent Density and Incident Photon‐to‐Current Conversion Efficiency of Liquid‐State NiO Perovskite‐Sensitized Solar Cells</title><author>Alessa, Hussain ; Noh, Mohamad Firdaus Mohamad ; Mumthas, Inzamam Nawas Nawas ; Wijayantha, Kahagala Gamage Upul ; Teridi, Mohd Asri Mat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3567-acd7a44ebae9d70fc3c1f9c69fadfd11c384d4f279ba8484ef0cd259e7ff56e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>aerosol-assisted chemical vapor deposition</topic><topic>Chemical vapor deposition</topic><topic>Correlation analysis</topic><topic>Density</topic><topic>Efficiency</topic><topic>Energy conversion efficiency</topic><topic>Harvesters</topic><topic>Iodine</topic><topic>Nickel oxides</topic><topic>NiO</topic><topic>Perovskites</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photovoltaic cells</topic><topic>photovoltaics</topic><topic>Solar cells</topic><topic>Spacecraft components</topic><topic>Thickness</topic><topic>Thin films</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alessa, Hussain</creatorcontrib><creatorcontrib>Noh, Mohamad Firdaus Mohamad</creatorcontrib><creatorcontrib>Mumthas, Inzamam Nawas Nawas</creatorcontrib><creatorcontrib>Wijayantha, Kahagala Gamage Upul</creatorcontrib><creatorcontrib>Teridi, Mohd Asri Mat</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alessa, Hussain</au><au>Noh, Mohamad Firdaus Mohamad</au><au>Mumthas, Inzamam Nawas Nawas</au><au>Wijayantha, Kahagala Gamage Upul</au><au>Teridi, Mohd Asri Mat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Outstanding Photocurrent Density and Incident Photon‐to‐Current Conversion Efficiency of Liquid‐State NiO Perovskite‐Sensitized Solar Cells</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2020-04</date><risdate>2020</risdate><volume>217</volume><issue>8</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>The efficiency and photocurrent density reported for p‐type‐sensitized solar cells up to now are still lagging behind that of the n‐type counterparts, limiting the successful development of p–n tandem cells. To circumvent this issue, NiO thin film is fabricated by the aerosol‐assisted chemical vapor deposition (AACVD) technique and used in p‐type solar cells. A systematic study is conducted to comprehend the correlation between NiO thickness and the power conversion efficiency (PCE) of liquid‐state NiO‐based sensitized solar cells. By carefully designing the cell components, this type of device demonstrates the highest photocurrent density (Jsc) exceeding 18 mA cm−2 when using iodine/triiodide as the redox shuttle matching the one produced by the TiO2 counterpart. This is accomplished by 1) using the AACVD technique for the one‐step deposition of compact and mesoporous NiO electrodes, 2) optimizing the thickness of the NiO layer through controlling the deposition time, and 3) adopting methylammonium lead iodide (CH3NH3PbI3) as a light harvester prepared via a sequential deposition method. Compact and mesoporous films based on NiO are simultaneously prepared via the single‐step aerosol‐assisted chemical vapor deposition. The use of NiO with an appropriate film thickness as the photocathode in liquid‐state perovskite‐sensitized solar cells leads to a remarkably high photocurrent density (JSC). The outstanding JSC is benefited from the impressive incident photon‐to‐current conversion efficiency.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.201900607</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5675-1733</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2020-04, Vol.217 (8), p.n/a
issn 1862-6300
1862-6319
language eng
recordid cdi_proquest_journals_2394762765
source Wiley Online Library Journals Frontfile Complete
subjects aerosol-assisted chemical vapor deposition
Chemical vapor deposition
Correlation analysis
Density
Efficiency
Energy conversion efficiency
Harvesters
Iodine
Nickel oxides
NiO
Perovskites
Photoelectric effect
Photoelectric emission
Photovoltaic cells
photovoltaics
Solar cells
Spacecraft components
Thickness
Thin films
Titanium dioxide
title Outstanding Photocurrent Density and Incident Photon‐to‐Current Conversion Efficiency of Liquid‐State NiO Perovskite‐Sensitized Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A46%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Outstanding%20Photocurrent%20Density%20and%20Incident%20Photon%E2%80%90to%E2%80%90Current%20Conversion%20Efficiency%20of%20Liquid%E2%80%90State%20NiO%20Perovskite%E2%80%90Sensitized%20Solar%20Cells&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Alessa,%20Hussain&rft.date=2020-04&rft.volume=217&rft.issue=8&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.201900607&rft_dat=%3Cproquest_cross%3E2394762765%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2394762765&rft_id=info:pmid/&rfr_iscdi=true