Mathematical programming approach to formulate intuitionistic fuzzy regression model based on least absolute deviations

Fuzzy regression models are widely used to investigate the relationship between explanatory and response variables for many decision-making applications in fuzzy environments. To include more fuzzy information in observations, this study uses intuitionistic fuzzy numbers (IFNs) to characterize the e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuzzy optimization and decision making 2020-06, Vol.19 (2), p.191-210
Hauptverfasser: Chen, Liang-Hsuan, Nien, Sheng-Hsing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 210
container_issue 2
container_start_page 191
container_title Fuzzy optimization and decision making
container_volume 19
creator Chen, Liang-Hsuan
Nien, Sheng-Hsing
description Fuzzy regression models are widely used to investigate the relationship between explanatory and response variables for many decision-making applications in fuzzy environments. To include more fuzzy information in observations, this study uses intuitionistic fuzzy numbers (IFNs) to characterize the explanatory and response variables in formulating intuitionistic fuzzy regression (IFR) models. Different from traditional solution methods, such as the least-squares method, in this study, mathematical programming problems are built up based on the criterion of least absolute deviations to establish IFR models with intuitionistic fuzzy parameters. The proposed approach has the advantages that the model formulation is not limited to the use of symmetric triangular IFNs and the signs of the parameters are determined simultaneously in the model formulation process. The prediction performance of the obtained models is evaluated in terms of similarity and distance measures. Comparison results of the performance measures indicate that the proposed models outperform an existing approach.
doi_str_mv 10.1007/s10700-020-09315-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2394633480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2394633480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-ae4882fff41a51eee2bbc7d0ae0a8ff432dabdbceb335a1356c1ea3da42a191d3</originalsourceid><addsrcrecordid>eNp9kMlOwzAQhi0EEqXwApwscQ54ibMcUcUmFXGBszWJJ2mqLMV2QOnT4xKk3jhY45n5vxnNT8g1Z7ecsfTOcZYyFjERXi65iqYTsuAqlZHIWXZ6-CdZFCuZn5ML57aM8USobEG-X8FvsAPflNDSnR1qC13X9DWFXcig3FA_0Gqw3diCR9r0fmx8M_SNCwitxv1-ohZri86FKu0Ggy0twKGhIW0RnKdQuKEdA23wq4ED7S7JWQWtw6u_uCQfjw_vq-do_fb0srpfR6VMEx8BxlkmqqqKOSiOiKIoytQwQAZZqEphoDBFiYWUCrhUSckRpIFYAM-5kUtyM88Nx3yO6LzeDqPtw0otZB4nUsYZCyoxq0o7OGex0jvbdGAnzZk-GKxng3UwWP8arKcA0RnC8mDHEQlCwVjCVZDIWeJCs6_RHrf_M_gHbbiN5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2394633480</pqid></control><display><type>article</type><title>Mathematical programming approach to formulate intuitionistic fuzzy regression model based on least absolute deviations</title><source>EBSCOhost Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Chen, Liang-Hsuan ; Nien, Sheng-Hsing</creator><creatorcontrib>Chen, Liang-Hsuan ; Nien, Sheng-Hsing</creatorcontrib><description>Fuzzy regression models are widely used to investigate the relationship between explanatory and response variables for many decision-making applications in fuzzy environments. To include more fuzzy information in observations, this study uses intuitionistic fuzzy numbers (IFNs) to characterize the explanatory and response variables in formulating intuitionistic fuzzy regression (IFR) models. Different from traditional solution methods, such as the least-squares method, in this study, mathematical programming problems are built up based on the criterion of least absolute deviations to establish IFR models with intuitionistic fuzzy parameters. The proposed approach has the advantages that the model formulation is not limited to the use of symmetric triangular IFNs and the signs of the parameters are determined simultaneously in the model formulation process. The prediction performance of the obtained models is evaluated in terms of similarity and distance measures. Comparison results of the performance measures indicate that the proposed models outperform an existing approach.</description><identifier>ISSN: 1568-4539</identifier><identifier>EISSN: 1573-2908</identifier><identifier>DOI: 10.1007/s10700-020-09315-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Calculus of Variations and Optimal Control; Optimization ; Decision making ; Distance measurement ; Least squares method ; Mathematical Logic and Foundations ; Mathematical programming ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Parameters ; Probability Theory and Stochastic Processes ; Regression models</subject><ispartof>Fuzzy optimization and decision making, 2020-06, Vol.19 (2), p.191-210</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-ae4882fff41a51eee2bbc7d0ae0a8ff432dabdbceb335a1356c1ea3da42a191d3</citedby><cites>FETCH-LOGICAL-c376t-ae4882fff41a51eee2bbc7d0ae0a8ff432dabdbceb335a1356c1ea3da42a191d3</cites><orcidid>0000-0002-9974-3423</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10700-020-09315-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10700-020-09315-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27913,27914,41477,42546,51308</link.rule.ids></links><search><creatorcontrib>Chen, Liang-Hsuan</creatorcontrib><creatorcontrib>Nien, Sheng-Hsing</creatorcontrib><title>Mathematical programming approach to formulate intuitionistic fuzzy regression model based on least absolute deviations</title><title>Fuzzy optimization and decision making</title><addtitle>Fuzzy Optim Decis Making</addtitle><description>Fuzzy regression models are widely used to investigate the relationship between explanatory and response variables for many decision-making applications in fuzzy environments. To include more fuzzy information in observations, this study uses intuitionistic fuzzy numbers (IFNs) to characterize the explanatory and response variables in formulating intuitionistic fuzzy regression (IFR) models. Different from traditional solution methods, such as the least-squares method, in this study, mathematical programming problems are built up based on the criterion of least absolute deviations to establish IFR models with intuitionistic fuzzy parameters. The proposed approach has the advantages that the model formulation is not limited to the use of symmetric triangular IFNs and the signs of the parameters are determined simultaneously in the model formulation process. The prediction performance of the obtained models is evaluated in terms of similarity and distance measures. Comparison results of the performance measures indicate that the proposed models outperform an existing approach.</description><subject>Artificial Intelligence</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Decision making</subject><subject>Distance measurement</subject><subject>Least squares method</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Regression models</subject><issn>1568-4539</issn><issn>1573-2908</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMlOwzAQhi0EEqXwApwscQ54ibMcUcUmFXGBszWJJ2mqLMV2QOnT4xKk3jhY45n5vxnNT8g1Z7ecsfTOcZYyFjERXi65iqYTsuAqlZHIWXZ6-CdZFCuZn5ML57aM8USobEG-X8FvsAPflNDSnR1qC13X9DWFXcig3FA_0Gqw3diCR9r0fmx8M_SNCwitxv1-ohZri86FKu0Ggy0twKGhIW0RnKdQuKEdA23wq4ED7S7JWQWtw6u_uCQfjw_vq-do_fb0srpfR6VMEx8BxlkmqqqKOSiOiKIoytQwQAZZqEphoDBFiYWUCrhUSckRpIFYAM-5kUtyM88Nx3yO6LzeDqPtw0otZB4nUsYZCyoxq0o7OGex0jvbdGAnzZk-GKxng3UwWP8arKcA0RnC8mDHEQlCwVjCVZDIWeJCs6_RHrf_M_gHbbiN5Q</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Chen, Liang-Hsuan</creator><creator>Nien, Sheng-Hsing</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9974-3423</orcidid></search><sort><creationdate>20200601</creationdate><title>Mathematical programming approach to formulate intuitionistic fuzzy regression model based on least absolute deviations</title><author>Chen, Liang-Hsuan ; Nien, Sheng-Hsing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-ae4882fff41a51eee2bbc7d0ae0a8ff432dabdbceb335a1356c1ea3da42a191d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Decision making</topic><topic>Distance measurement</topic><topic>Least squares method</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Regression models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Liang-Hsuan</creatorcontrib><creatorcontrib>Nien, Sheng-Hsing</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Fuzzy optimization and decision making</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Liang-Hsuan</au><au>Nien, Sheng-Hsing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical programming approach to formulate intuitionistic fuzzy regression model based on least absolute deviations</atitle><jtitle>Fuzzy optimization and decision making</jtitle><stitle>Fuzzy Optim Decis Making</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>19</volume><issue>2</issue><spage>191</spage><epage>210</epage><pages>191-210</pages><issn>1568-4539</issn><eissn>1573-2908</eissn><abstract>Fuzzy regression models are widely used to investigate the relationship between explanatory and response variables for many decision-making applications in fuzzy environments. To include more fuzzy information in observations, this study uses intuitionistic fuzzy numbers (IFNs) to characterize the explanatory and response variables in formulating intuitionistic fuzzy regression (IFR) models. Different from traditional solution methods, such as the least-squares method, in this study, mathematical programming problems are built up based on the criterion of least absolute deviations to establish IFR models with intuitionistic fuzzy parameters. The proposed approach has the advantages that the model formulation is not limited to the use of symmetric triangular IFNs and the signs of the parameters are determined simultaneously in the model formulation process. The prediction performance of the obtained models is evaluated in terms of similarity and distance measures. Comparison results of the performance measures indicate that the proposed models outperform an existing approach.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10700-020-09315-y</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-9974-3423</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1568-4539
ispartof Fuzzy optimization and decision making, 2020-06, Vol.19 (2), p.191-210
issn 1568-4539
1573-2908
language eng
recordid cdi_proquest_journals_2394633480
source EBSCOhost Business Source Complete; Springer Nature - Complete Springer Journals
subjects Artificial Intelligence
Calculus of Variations and Optimal Control
Optimization
Decision making
Distance measurement
Least squares method
Mathematical Logic and Foundations
Mathematical programming
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Parameters
Probability Theory and Stochastic Processes
Regression models
title Mathematical programming approach to formulate intuitionistic fuzzy regression model based on least absolute deviations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A32%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20programming%20approach%20to%20formulate%20intuitionistic%20fuzzy%20regression%20model%20based%20on%20least%20absolute%20deviations&rft.jtitle=Fuzzy%20optimization%20and%20decision%20making&rft.au=Chen,%20Liang-Hsuan&rft.date=2020-06-01&rft.volume=19&rft.issue=2&rft.spage=191&rft.epage=210&rft.pages=191-210&rft.issn=1568-4539&rft.eissn=1573-2908&rft_id=info:doi/10.1007/s10700-020-09315-y&rft_dat=%3Cproquest_cross%3E2394633480%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2394633480&rft_id=info:pmid/&rfr_iscdi=true