Dissipation in Parabolic SPDEs
The study of intermittency for the parabolic Anderson problem usually focuses on the moments of the solution which can describe the high peaks in the probability space. In this paper we set up the equation on a finite spatial interval, and study the other part of intermittency, i.e., the part of the...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2020-04, Vol.179 (2), p.502-534 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 534 |
---|---|
container_issue | 2 |
container_start_page | 502 |
container_title | Journal of statistical physics |
container_volume | 179 |
creator | Khoshnevisan, Davar Kim, Kunwoo Mueller, Carl Shiu, Shang-Yuan |
description | The study of intermittency for the parabolic Anderson problem usually focuses on the moments of the solution which can describe the high peaks in the probability space. In this paper we set up the equation on a finite spatial interval, and study the other part of intermittency, i.e., the part of the probability space on which the solution is close to zero. This set has probability very close to one, and we show that on this set, the supremum of the solution over space is close to 0. As a consequence, we find that almost surely the spatial supremum of the solution tends to zero exponentially fast as time increases. We also show that if the noise term is very large, then the probability of the set on which the supremum of the solution is very small has a very high probability. |
doi_str_mv | 10.1007/s10955-020-02540-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2394552225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A621914236</galeid><sourcerecordid>A621914236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-39d5c4b458da6d1b8c2bad9b2b57c040f8e2be711e4c456d1e9009e4be990693</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wIMUPG-dTJLdzbH0Q4WCBXsPSTZbUtpNTbYH_73RFbzJMDMwvM_M8BJyT2FKAaqnREEKUQBCTsFzvSAjKiosZEnZJRkBIBa8ouKa3KS0BwBZSzEiDwufkj_p3odu4rvJRkdtwsHbyftmsUy35KrVh-TufvuYbFfL7fylWL89v85n68IyUfcFk42w3HBRN7psqKktGt1Ig0ZUFji0tUPjKkodt1xkhZP5AceNkxJKycbkcVh7iuHj7FKv9uEcu3xRIZNcCEQUWTUdVDt9cMp3beijtjkad_Q2dK71eT4rkUrKkZUZwAGwMaQUXatO0R91_FQU1LdvavBNZd_Uj28KMsQGKGVxt3Px75d_qC_FAG1R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2394552225</pqid></control><display><type>article</type><title>Dissipation in Parabolic SPDEs</title><source>Springer Nature</source><creator>Khoshnevisan, Davar ; Kim, Kunwoo ; Mueller, Carl ; Shiu, Shang-Yuan</creator><creatorcontrib>Khoshnevisan, Davar ; Kim, Kunwoo ; Mueller, Carl ; Shiu, Shang-Yuan</creatorcontrib><description>The study of intermittency for the parabolic Anderson problem usually focuses on the moments of the solution which can describe the high peaks in the probability space. In this paper we set up the equation on a finite spatial interval, and study the other part of intermittency, i.e., the part of the probability space on which the solution is close to zero. This set has probability very close to one, and we show that on this set, the supremum of the solution over space is close to 0. As a consequence, we find that almost surely the spatial supremum of the solution tends to zero exponentially fast as time increases. We also show that if the noise term is very large, then the probability of the set on which the supremum of the solution is very small has a very high probability.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-020-02540-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Intermittency ; Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Theoretical</subject><ispartof>Journal of statistical physics, 2020-04, Vol.179 (2), p.502-534</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-39d5c4b458da6d1b8c2bad9b2b57c040f8e2be711e4c456d1e9009e4be990693</citedby><cites>FETCH-LOGICAL-c358t-39d5c4b458da6d1b8c2bad9b2b57c040f8e2be711e4c456d1e9009e4be990693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-020-02540-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-020-02540-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Khoshnevisan, Davar</creatorcontrib><creatorcontrib>Kim, Kunwoo</creatorcontrib><creatorcontrib>Mueller, Carl</creatorcontrib><creatorcontrib>Shiu, Shang-Yuan</creatorcontrib><title>Dissipation in Parabolic SPDEs</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>The study of intermittency for the parabolic Anderson problem usually focuses on the moments of the solution which can describe the high peaks in the probability space. In this paper we set up the equation on a finite spatial interval, and study the other part of intermittency, i.e., the part of the probability space on which the solution is close to zero. This set has probability very close to one, and we show that on this set, the supremum of the solution over space is close to 0. As a consequence, we find that almost surely the spatial supremum of the solution tends to zero exponentially fast as time increases. We also show that if the noise term is very large, then the probability of the set on which the supremum of the solution is very small has a very high probability.</description><subject>Intermittency</subject><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wIMUPG-dTJLdzbH0Q4WCBXsPSTZbUtpNTbYH_73RFbzJMDMwvM_M8BJyT2FKAaqnREEKUQBCTsFzvSAjKiosZEnZJRkBIBa8ouKa3KS0BwBZSzEiDwufkj_p3odu4rvJRkdtwsHbyftmsUy35KrVh-TufvuYbFfL7fylWL89v85n68IyUfcFk42w3HBRN7psqKktGt1Ig0ZUFji0tUPjKkodt1xkhZP5AceNkxJKycbkcVh7iuHj7FKv9uEcu3xRIZNcCEQUWTUdVDt9cMp3beijtjkad_Q2dK71eT4rkUrKkZUZwAGwMaQUXatO0R91_FQU1LdvavBNZd_Uj28KMsQGKGVxt3Px75d_qC_FAG1R</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Khoshnevisan, Davar</creator><creator>Kim, Kunwoo</creator><creator>Mueller, Carl</creator><creator>Shiu, Shang-Yuan</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200401</creationdate><title>Dissipation in Parabolic SPDEs</title><author>Khoshnevisan, Davar ; Kim, Kunwoo ; Mueller, Carl ; Shiu, Shang-Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-39d5c4b458da6d1b8c2bad9b2b57c040f8e2be711e4c456d1e9009e4be990693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Intermittency</topic><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khoshnevisan, Davar</creatorcontrib><creatorcontrib>Kim, Kunwoo</creatorcontrib><creatorcontrib>Mueller, Carl</creatorcontrib><creatorcontrib>Shiu, Shang-Yuan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khoshnevisan, Davar</au><au>Kim, Kunwoo</au><au>Mueller, Carl</au><au>Shiu, Shang-Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissipation in Parabolic SPDEs</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>179</volume><issue>2</issue><spage>502</spage><epage>534</epage><pages>502-534</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>The study of intermittency for the parabolic Anderson problem usually focuses on the moments of the solution which can describe the high peaks in the probability space. In this paper we set up the equation on a finite spatial interval, and study the other part of intermittency, i.e., the part of the probability space on which the solution is close to zero. This set has probability very close to one, and we show that on this set, the supremum of the solution over space is close to 0. As a consequence, we find that almost surely the spatial supremum of the solution tends to zero exponentially fast as time increases. We also show that if the noise term is very large, then the probability of the set on which the supremum of the solution is very small has a very high probability.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-020-02540-0</doi><tpages>33</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4715 |
ispartof | Journal of statistical physics, 2020-04, Vol.179 (2), p.502-534 |
issn | 0022-4715 1572-9613 |
language | eng |
recordid | cdi_proquest_journals_2394552225 |
source | Springer Nature |
subjects | Intermittency Mathematical and Computational Physics Physical Chemistry Physics Physics and Astronomy Quantum Physics Statistical Physics and Dynamical Systems Theoretical |
title | Dissipation in Parabolic SPDEs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A14%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissipation%20in%20Parabolic%20SPDEs&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Khoshnevisan,%20Davar&rft.date=2020-04-01&rft.volume=179&rft.issue=2&rft.spage=502&rft.epage=534&rft.pages=502-534&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-020-02540-0&rft_dat=%3Cgale_proqu%3EA621914236%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2394552225&rft_id=info:pmid/&rft_galeid=A621914236&rfr_iscdi=true |