Dissipation in Parabolic SPDEs

The study of intermittency for the parabolic Anderson problem usually focuses on the moments of the solution which can describe the high peaks in the probability space. In this paper we set up the equation on a finite spatial interval, and study the other part of intermittency, i.e., the part of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2020-04, Vol.179 (2), p.502-534
Hauptverfasser: Khoshnevisan, Davar, Kim, Kunwoo, Mueller, Carl, Shiu, Shang-Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 534
container_issue 2
container_start_page 502
container_title Journal of statistical physics
container_volume 179
creator Khoshnevisan, Davar
Kim, Kunwoo
Mueller, Carl
Shiu, Shang-Yuan
description The study of intermittency for the parabolic Anderson problem usually focuses on the moments of the solution which can describe the high peaks in the probability space. In this paper we set up the equation on a finite spatial interval, and study the other part of intermittency, i.e., the part of the probability space on which the solution is close to zero. This set has probability very close to one, and we show that on this set, the supremum of the solution over space is close to 0. As a consequence, we find that almost surely the spatial supremum of the solution tends to zero exponentially fast as time increases. We also show that if the noise term is very large, then the probability of the set on which the supremum of the solution is very small has a very high probability.
doi_str_mv 10.1007/s10955-020-02540-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2394552225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A621914236</galeid><sourcerecordid>A621914236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-39d5c4b458da6d1b8c2bad9b2b57c040f8e2be711e4c456d1e9009e4be990693</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wIMUPG-dTJLdzbH0Q4WCBXsPSTZbUtpNTbYH_73RFbzJMDMwvM_M8BJyT2FKAaqnREEKUQBCTsFzvSAjKiosZEnZJRkBIBa8ouKa3KS0BwBZSzEiDwufkj_p3odu4rvJRkdtwsHbyftmsUy35KrVh-TufvuYbFfL7fylWL89v85n68IyUfcFk42w3HBRN7psqKktGt1Ig0ZUFji0tUPjKkodt1xkhZP5AceNkxJKycbkcVh7iuHj7FKv9uEcu3xRIZNcCEQUWTUdVDt9cMp3beijtjkad_Q2dK71eT4rkUrKkZUZwAGwMaQUXatO0R91_FQU1LdvavBNZd_Uj28KMsQGKGVxt3Px75d_qC_FAG1R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2394552225</pqid></control><display><type>article</type><title>Dissipation in Parabolic SPDEs</title><source>Springer Nature</source><creator>Khoshnevisan, Davar ; Kim, Kunwoo ; Mueller, Carl ; Shiu, Shang-Yuan</creator><creatorcontrib>Khoshnevisan, Davar ; Kim, Kunwoo ; Mueller, Carl ; Shiu, Shang-Yuan</creatorcontrib><description>The study of intermittency for the parabolic Anderson problem usually focuses on the moments of the solution which can describe the high peaks in the probability space. In this paper we set up the equation on a finite spatial interval, and study the other part of intermittency, i.e., the part of the probability space on which the solution is close to zero. This set has probability very close to one, and we show that on this set, the supremum of the solution over space is close to 0. As a consequence, we find that almost surely the spatial supremum of the solution tends to zero exponentially fast as time increases. We also show that if the noise term is very large, then the probability of the set on which the supremum of the solution is very small has a very high probability.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-020-02540-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Intermittency ; Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Theoretical</subject><ispartof>Journal of statistical physics, 2020-04, Vol.179 (2), p.502-534</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-39d5c4b458da6d1b8c2bad9b2b57c040f8e2be711e4c456d1e9009e4be990693</citedby><cites>FETCH-LOGICAL-c358t-39d5c4b458da6d1b8c2bad9b2b57c040f8e2be711e4c456d1e9009e4be990693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-020-02540-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-020-02540-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Khoshnevisan, Davar</creatorcontrib><creatorcontrib>Kim, Kunwoo</creatorcontrib><creatorcontrib>Mueller, Carl</creatorcontrib><creatorcontrib>Shiu, Shang-Yuan</creatorcontrib><title>Dissipation in Parabolic SPDEs</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>The study of intermittency for the parabolic Anderson problem usually focuses on the moments of the solution which can describe the high peaks in the probability space. In this paper we set up the equation on a finite spatial interval, and study the other part of intermittency, i.e., the part of the probability space on which the solution is close to zero. This set has probability very close to one, and we show that on this set, the supremum of the solution over space is close to 0. As a consequence, we find that almost surely the spatial supremum of the solution tends to zero exponentially fast as time increases. We also show that if the noise term is very large, then the probability of the set on which the supremum of the solution is very small has a very high probability.</description><subject>Intermittency</subject><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wIMUPG-dTJLdzbH0Q4WCBXsPSTZbUtpNTbYH_73RFbzJMDMwvM_M8BJyT2FKAaqnREEKUQBCTsFzvSAjKiosZEnZJRkBIBa8ouKa3KS0BwBZSzEiDwufkj_p3odu4rvJRkdtwsHbyftmsUy35KrVh-TufvuYbFfL7fylWL89v85n68IyUfcFk42w3HBRN7psqKktGt1Ig0ZUFji0tUPjKkodt1xkhZP5AceNkxJKycbkcVh7iuHj7FKv9uEcu3xRIZNcCEQUWTUdVDt9cMp3beijtjkad_Q2dK71eT4rkUrKkZUZwAGwMaQUXatO0R91_FQU1LdvavBNZd_Uj28KMsQGKGVxt3Px75d_qC_FAG1R</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Khoshnevisan, Davar</creator><creator>Kim, Kunwoo</creator><creator>Mueller, Carl</creator><creator>Shiu, Shang-Yuan</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200401</creationdate><title>Dissipation in Parabolic SPDEs</title><author>Khoshnevisan, Davar ; Kim, Kunwoo ; Mueller, Carl ; Shiu, Shang-Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-39d5c4b458da6d1b8c2bad9b2b57c040f8e2be711e4c456d1e9009e4be990693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Intermittency</topic><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khoshnevisan, Davar</creatorcontrib><creatorcontrib>Kim, Kunwoo</creatorcontrib><creatorcontrib>Mueller, Carl</creatorcontrib><creatorcontrib>Shiu, Shang-Yuan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khoshnevisan, Davar</au><au>Kim, Kunwoo</au><au>Mueller, Carl</au><au>Shiu, Shang-Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissipation in Parabolic SPDEs</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>179</volume><issue>2</issue><spage>502</spage><epage>534</epage><pages>502-534</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>The study of intermittency for the parabolic Anderson problem usually focuses on the moments of the solution which can describe the high peaks in the probability space. In this paper we set up the equation on a finite spatial interval, and study the other part of intermittency, i.e., the part of the probability space on which the solution is close to zero. This set has probability very close to one, and we show that on this set, the supremum of the solution over space is close to 0. As a consequence, we find that almost surely the spatial supremum of the solution tends to zero exponentially fast as time increases. We also show that if the noise term is very large, then the probability of the set on which the supremum of the solution is very small has a very high probability.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-020-02540-0</doi><tpages>33</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof Journal of statistical physics, 2020-04, Vol.179 (2), p.502-534
issn 0022-4715
1572-9613
language eng
recordid cdi_proquest_journals_2394552225
source Springer Nature
subjects Intermittency
Mathematical and Computational Physics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Statistical Physics and Dynamical Systems
Theoretical
title Dissipation in Parabolic SPDEs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A14%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissipation%20in%20Parabolic%20SPDEs&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Khoshnevisan,%20Davar&rft.date=2020-04-01&rft.volume=179&rft.issue=2&rft.spage=502&rft.epage=534&rft.pages=502-534&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-020-02540-0&rft_dat=%3Cgale_proqu%3EA621914236%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2394552225&rft_id=info:pmid/&rft_galeid=A621914236&rfr_iscdi=true