Phenol-formaldehyde resins with suitable bonding strength synthesized from “less-reactive” hardwood lignin fractions

The substitution of phenol by lignin in phenol-formaldehyde (PF) resins is one of the most promising end uses of lignin valorization. Lignin from grasses and softwood has been the focus of the studies in this field as they present a higher number of theoretical reactive sites for resin synthesis. He...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Holzforschung 2020-02, Vol.74 (2), p.175-183
Hauptverfasser: Lourençon, Tainise V., Alakurtti, Sami, Virtanen, Tommi, Jääskeläinen, Anna-Stiina, Liitiä, Tiina, Hughes, Mark, Magalhães, Washington L.E., Muniz, Graciela I.B., Tamminen, Tarja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 183
container_issue 2
container_start_page 175
container_title Holzforschung
container_volume 74
creator Lourençon, Tainise V.
Alakurtti, Sami
Virtanen, Tommi
Jääskeläinen, Anna-Stiina
Liitiä, Tiina
Hughes, Mark
Magalhães, Washington L.E.
Muniz, Graciela I.B.
Tamminen, Tarja
description The substitution of phenol by lignin in phenol-formaldehyde (PF) resins is one of the most promising end uses of lignin valorization. Lignin from grasses and softwood has been the focus of the studies in this field as they present a higher number of theoretical reactive sites for resin synthesis. Herein we examined the composition and chemical reactivity of “less-reactive” hardwood lignin fractions and their performance in PF resins, synthesized by substituting 50 wt% of the phenol with lignin. Before resin synthesis, the samples were hydroxymethylated and the maximum formaldehyde consumption was recorded. By doing so, we observed that hardwood fractions consumed formaldehyde close to the theoretical calculation, whereas the reference softwood lignin consumed only about ¼ of the theoretical value. In the resin synthesis, we added formaldehyde to the formulation according to the measured maximum formaldehyde consumption. Thus, low values of free formaldehyde in lignin-PF (LPF) resins were achieved (
doi_str_mv 10.1515/hf-2018-0203
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2394475151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2394475151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-2b3e267a06e07c936f3d45acac7d565aab3ca4f432056a9ea33fd345cb104d383</originalsourceid><addsrcrecordid>eNptkEtOwzAQhi0EEuWx4wCW2BKwM3bSskMVLwkJFiCxi5x43ASldrFTSlj1IHA5ToKjIrFhNa9v_tH8hBxxdsoll2e1SVLGxwlLGWyREReQJwLE8zYZsaEPY2C7ZC-El1hKBnxE3h9qtK5NjPNz1Wqse43UY2hsoKumq2lYNp0qW6Sls7qxMxo6j3Y2THrb1ZH8QE2Nd3P6vf5sMYTEo6q65g2_11-0Vl6vnNO0bWa2sREcZs6GA7JjVBvw8Dfuk6ery8fpTXJ3f307vbhLKhhPuiQtAdMsVyxDllcTyAxoIVWlqlzLTCpVQqWEEZAymakJKgCjQciq5Ezo-PA-Od7oLrx7XWLoihe39DaeLFKYCJFH43ikTjZU5V0IHk2x8M1c-b7grBi8LWpTDN4Wg7cRP9_gK9V26DXO_LKPyZ_2f2u5SHku4Qekn4RH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2394475151</pqid></control><display><type>article</type><title>Phenol-formaldehyde resins with suitable bonding strength synthesized from “less-reactive” hardwood lignin fractions</title><source>De Gruyter journals</source><creator>Lourençon, Tainise V. ; Alakurtti, Sami ; Virtanen, Tommi ; Jääskeläinen, Anna-Stiina ; Liitiä, Tiina ; Hughes, Mark ; Magalhães, Washington L.E. ; Muniz, Graciela I.B. ; Tamminen, Tarja</creator><creatorcontrib>Lourençon, Tainise V. ; Alakurtti, Sami ; Virtanen, Tommi ; Jääskeläinen, Anna-Stiina ; Liitiä, Tiina ; Hughes, Mark ; Magalhães, Washington L.E. ; Muniz, Graciela I.B. ; Tamminen, Tarja</creatorcontrib><description>The substitution of phenol by lignin in phenol-formaldehyde (PF) resins is one of the most promising end uses of lignin valorization. Lignin from grasses and softwood has been the focus of the studies in this field as they present a higher number of theoretical reactive sites for resin synthesis. Herein we examined the composition and chemical reactivity of “less-reactive” hardwood lignin fractions and their performance in PF resins, synthesized by substituting 50 wt% of the phenol with lignin. Before resin synthesis, the samples were hydroxymethylated and the maximum formaldehyde consumption was recorded. By doing so, we observed that hardwood fractions consumed formaldehyde close to the theoretical calculation, whereas the reference softwood lignin consumed only about ¼ of the theoretical value. In the resin synthesis, we added formaldehyde to the formulation according to the measured maximum formaldehyde consumption. Thus, low values of free formaldehyde in lignin-PF (LPF) resins were achieved (&lt;0.23%). Moreover, the resin bonding strength displayed similar performance irrespective of whether the LPF resins were made with softwood or hardwood lignin (range of 3.4–4.8 N mm at 150°C and 45–480 s of press time). Furthermore, we concluded that hardwood kraft lignins present no disadvantage compared to softwood lignins in PF resin applications, which have significant practical implications.</description><identifier>ISSN: 0018-3830</identifier><identifier>EISSN: 1437-434X</identifier><identifier>DOI: 10.1515/hf-2018-0203</identifier><language>eng</language><publisher>Berlin: De Gruyter</publisher><subject>Aldehydes ; Bonding strength ; Chemical composition ; Chemical reactions ; Consumption ; Formaldehyde ; formaldehyde consumption ; Hardwoods ; kraft ; Lignin ; Phenol formaldehyde resins ; phenolic resins ; Phenols ; Polymers ; reactive sites ; Resin bonding ; Resins ; Softwoods ; technical lignin</subject><ispartof>Holzforschung, 2020-02, Vol.74 (2), p.175-183</ispartof><rights>2020 Walter de Gruyter GmbH, Berlin/Boston</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-2b3e267a06e07c936f3d45acac7d565aab3ca4f432056a9ea33fd345cb104d383</citedby><cites>FETCH-LOGICAL-c389t-2b3e267a06e07c936f3d45acac7d565aab3ca4f432056a9ea33fd345cb104d383</cites><orcidid>0000-0001-9043-5128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/hf-2018-0203/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/hf-2018-0203/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,66497,68281</link.rule.ids></links><search><creatorcontrib>Lourençon, Tainise V.</creatorcontrib><creatorcontrib>Alakurtti, Sami</creatorcontrib><creatorcontrib>Virtanen, Tommi</creatorcontrib><creatorcontrib>Jääskeläinen, Anna-Stiina</creatorcontrib><creatorcontrib>Liitiä, Tiina</creatorcontrib><creatorcontrib>Hughes, Mark</creatorcontrib><creatorcontrib>Magalhães, Washington L.E.</creatorcontrib><creatorcontrib>Muniz, Graciela I.B.</creatorcontrib><creatorcontrib>Tamminen, Tarja</creatorcontrib><title>Phenol-formaldehyde resins with suitable bonding strength synthesized from “less-reactive” hardwood lignin fractions</title><title>Holzforschung</title><description>The substitution of phenol by lignin in phenol-formaldehyde (PF) resins is one of the most promising end uses of lignin valorization. Lignin from grasses and softwood has been the focus of the studies in this field as they present a higher number of theoretical reactive sites for resin synthesis. Herein we examined the composition and chemical reactivity of “less-reactive” hardwood lignin fractions and their performance in PF resins, synthesized by substituting 50 wt% of the phenol with lignin. Before resin synthesis, the samples were hydroxymethylated and the maximum formaldehyde consumption was recorded. By doing so, we observed that hardwood fractions consumed formaldehyde close to the theoretical calculation, whereas the reference softwood lignin consumed only about ¼ of the theoretical value. In the resin synthesis, we added formaldehyde to the formulation according to the measured maximum formaldehyde consumption. Thus, low values of free formaldehyde in lignin-PF (LPF) resins were achieved (&lt;0.23%). Moreover, the resin bonding strength displayed similar performance irrespective of whether the LPF resins were made with softwood or hardwood lignin (range of 3.4–4.8 N mm at 150°C and 45–480 s of press time). Furthermore, we concluded that hardwood kraft lignins present no disadvantage compared to softwood lignins in PF resin applications, which have significant practical implications.</description><subject>Aldehydes</subject><subject>Bonding strength</subject><subject>Chemical composition</subject><subject>Chemical reactions</subject><subject>Consumption</subject><subject>Formaldehyde</subject><subject>formaldehyde consumption</subject><subject>Hardwoods</subject><subject>kraft</subject><subject>Lignin</subject><subject>Phenol formaldehyde resins</subject><subject>phenolic resins</subject><subject>Phenols</subject><subject>Polymers</subject><subject>reactive sites</subject><subject>Resin bonding</subject><subject>Resins</subject><subject>Softwoods</subject><subject>technical lignin</subject><issn>0018-3830</issn><issn>1437-434X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptkEtOwzAQhi0EEuWx4wCW2BKwM3bSskMVLwkJFiCxi5x43ASldrFTSlj1IHA5ToKjIrFhNa9v_tH8hBxxdsoll2e1SVLGxwlLGWyREReQJwLE8zYZsaEPY2C7ZC-El1hKBnxE3h9qtK5NjPNz1Wqse43UY2hsoKumq2lYNp0qW6Sls7qxMxo6j3Y2THrb1ZH8QE2Nd3P6vf5sMYTEo6q65g2_11-0Vl6vnNO0bWa2sREcZs6GA7JjVBvw8Dfuk6ery8fpTXJ3f307vbhLKhhPuiQtAdMsVyxDllcTyAxoIVWlqlzLTCpVQqWEEZAymakJKgCjQciq5Ezo-PA-Od7oLrx7XWLoihe39DaeLFKYCJFH43ikTjZU5V0IHk2x8M1c-b7grBi8LWpTDN4Wg7cRP9_gK9V26DXO_LKPyZ_2f2u5SHku4Qekn4RH</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Lourençon, Tainise V.</creator><creator>Alakurtti, Sami</creator><creator>Virtanen, Tommi</creator><creator>Jääskeläinen, Anna-Stiina</creator><creator>Liitiä, Tiina</creator><creator>Hughes, Mark</creator><creator>Magalhães, Washington L.E.</creator><creator>Muniz, Graciela I.B.</creator><creator>Tamminen, Tarja</creator><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0001-9043-5128</orcidid></search><sort><creationdate>20200201</creationdate><title>Phenol-formaldehyde resins with suitable bonding strength synthesized from “less-reactive” hardwood lignin fractions</title><author>Lourençon, Tainise V. ; Alakurtti, Sami ; Virtanen, Tommi ; Jääskeläinen, Anna-Stiina ; Liitiä, Tiina ; Hughes, Mark ; Magalhães, Washington L.E. ; Muniz, Graciela I.B. ; Tamminen, Tarja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-2b3e267a06e07c936f3d45acac7d565aab3ca4f432056a9ea33fd345cb104d383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aldehydes</topic><topic>Bonding strength</topic><topic>Chemical composition</topic><topic>Chemical reactions</topic><topic>Consumption</topic><topic>Formaldehyde</topic><topic>formaldehyde consumption</topic><topic>Hardwoods</topic><topic>kraft</topic><topic>Lignin</topic><topic>Phenol formaldehyde resins</topic><topic>phenolic resins</topic><topic>Phenols</topic><topic>Polymers</topic><topic>reactive sites</topic><topic>Resin bonding</topic><topic>Resins</topic><topic>Softwoods</topic><topic>technical lignin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lourençon, Tainise V.</creatorcontrib><creatorcontrib>Alakurtti, Sami</creatorcontrib><creatorcontrib>Virtanen, Tommi</creatorcontrib><creatorcontrib>Jääskeläinen, Anna-Stiina</creatorcontrib><creatorcontrib>Liitiä, Tiina</creatorcontrib><creatorcontrib>Hughes, Mark</creatorcontrib><creatorcontrib>Magalhães, Washington L.E.</creatorcontrib><creatorcontrib>Muniz, Graciela I.B.</creatorcontrib><creatorcontrib>Tamminen, Tarja</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Holzforschung</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lourençon, Tainise V.</au><au>Alakurtti, Sami</au><au>Virtanen, Tommi</au><au>Jääskeläinen, Anna-Stiina</au><au>Liitiä, Tiina</au><au>Hughes, Mark</au><au>Magalhães, Washington L.E.</au><au>Muniz, Graciela I.B.</au><au>Tamminen, Tarja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phenol-formaldehyde resins with suitable bonding strength synthesized from “less-reactive” hardwood lignin fractions</atitle><jtitle>Holzforschung</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>74</volume><issue>2</issue><spage>175</spage><epage>183</epage><pages>175-183</pages><issn>0018-3830</issn><eissn>1437-434X</eissn><abstract>The substitution of phenol by lignin in phenol-formaldehyde (PF) resins is one of the most promising end uses of lignin valorization. Lignin from grasses and softwood has been the focus of the studies in this field as they present a higher number of theoretical reactive sites for resin synthesis. Herein we examined the composition and chemical reactivity of “less-reactive” hardwood lignin fractions and their performance in PF resins, synthesized by substituting 50 wt% of the phenol with lignin. Before resin synthesis, the samples were hydroxymethylated and the maximum formaldehyde consumption was recorded. By doing so, we observed that hardwood fractions consumed formaldehyde close to the theoretical calculation, whereas the reference softwood lignin consumed only about ¼ of the theoretical value. In the resin synthesis, we added formaldehyde to the formulation according to the measured maximum formaldehyde consumption. Thus, low values of free formaldehyde in lignin-PF (LPF) resins were achieved (&lt;0.23%). Moreover, the resin bonding strength displayed similar performance irrespective of whether the LPF resins were made with softwood or hardwood lignin (range of 3.4–4.8 N mm at 150°C and 45–480 s of press time). Furthermore, we concluded that hardwood kraft lignins present no disadvantage compared to softwood lignins in PF resin applications, which have significant practical implications.</abstract><cop>Berlin</cop><pub>De Gruyter</pub><doi>10.1515/hf-2018-0203</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9043-5128</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-3830
ispartof Holzforschung, 2020-02, Vol.74 (2), p.175-183
issn 0018-3830
1437-434X
language eng
recordid cdi_proquest_journals_2394475151
source De Gruyter journals
subjects Aldehydes
Bonding strength
Chemical composition
Chemical reactions
Consumption
Formaldehyde
formaldehyde consumption
Hardwoods
kraft
Lignin
Phenol formaldehyde resins
phenolic resins
Phenols
Polymers
reactive sites
Resin bonding
Resins
Softwoods
technical lignin
title Phenol-formaldehyde resins with suitable bonding strength synthesized from “less-reactive” hardwood lignin fractions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A28%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phenol-formaldehyde%20resins%20with%20suitable%20bonding%20strength%20synthesized%20from%20%E2%80%9Cless-reactive%E2%80%9D%20hardwood%20lignin%20fractions&rft.jtitle=Holzforschung&rft.au=Louren%C3%A7on,%20Tainise%20V.&rft.date=2020-02-01&rft.volume=74&rft.issue=2&rft.spage=175&rft.epage=183&rft.pages=175-183&rft.issn=0018-3830&rft.eissn=1437-434X&rft_id=info:doi/10.1515/hf-2018-0203&rft_dat=%3Cproquest_cross%3E2394475151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2394475151&rft_id=info:pmid/&rfr_iscdi=true