Phenol-formaldehyde resins with suitable bonding strength synthesized from “less-reactive” hardwood lignin fractions
The substitution of phenol by lignin in phenol-formaldehyde (PF) resins is one of the most promising end uses of lignin valorization. Lignin from grasses and softwood has been the focus of the studies in this field as they present a higher number of theoretical reactive sites for resin synthesis. He...
Gespeichert in:
Veröffentlicht in: | Holzforschung 2020-02, Vol.74 (2), p.175-183 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 183 |
---|---|
container_issue | 2 |
container_start_page | 175 |
container_title | Holzforschung |
container_volume | 74 |
creator | Lourençon, Tainise V. Alakurtti, Sami Virtanen, Tommi Jääskeläinen, Anna-Stiina Liitiä, Tiina Hughes, Mark Magalhães, Washington L.E. Muniz, Graciela I.B. Tamminen, Tarja |
description | The substitution of phenol by lignin in phenol-formaldehyde (PF) resins is one of the most promising end uses of lignin valorization. Lignin from grasses and softwood has been the focus of the studies in this field as they present a higher number of theoretical reactive sites for resin synthesis. Herein we examined the composition and chemical reactivity of “less-reactive” hardwood lignin fractions and their performance in PF resins, synthesized by substituting 50 wt% of the phenol with lignin. Before resin synthesis, the samples were hydroxymethylated and the maximum formaldehyde consumption was recorded. By doing so, we observed that hardwood fractions consumed formaldehyde close to the theoretical calculation, whereas the reference softwood lignin consumed only about ¼ of the theoretical value. In the resin synthesis, we added formaldehyde to the formulation according to the measured maximum formaldehyde consumption. Thus, low values of free formaldehyde in lignin-PF (LPF) resins were achieved ( |
doi_str_mv | 10.1515/hf-2018-0203 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2394475151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2394475151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-2b3e267a06e07c936f3d45acac7d565aab3ca4f432056a9ea33fd345cb104d383</originalsourceid><addsrcrecordid>eNptkEtOwzAQhi0EEuWx4wCW2BKwM3bSskMVLwkJFiCxi5x43ASldrFTSlj1IHA5ToKjIrFhNa9v_tH8hBxxdsoll2e1SVLGxwlLGWyREReQJwLE8zYZsaEPY2C7ZC-El1hKBnxE3h9qtK5NjPNz1Wqse43UY2hsoKumq2lYNp0qW6Sls7qxMxo6j3Y2THrb1ZH8QE2Nd3P6vf5sMYTEo6q65g2_11-0Vl6vnNO0bWa2sREcZs6GA7JjVBvw8Dfuk6ery8fpTXJ3f307vbhLKhhPuiQtAdMsVyxDllcTyAxoIVWlqlzLTCpVQqWEEZAymakJKgCjQciq5Ezo-PA-Od7oLrx7XWLoihe39DaeLFKYCJFH43ikTjZU5V0IHk2x8M1c-b7grBi8LWpTDN4Wg7cRP9_gK9V26DXO_LKPyZ_2f2u5SHku4Qekn4RH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2394475151</pqid></control><display><type>article</type><title>Phenol-formaldehyde resins with suitable bonding strength synthesized from “less-reactive” hardwood lignin fractions</title><source>De Gruyter journals</source><creator>Lourençon, Tainise V. ; Alakurtti, Sami ; Virtanen, Tommi ; Jääskeläinen, Anna-Stiina ; Liitiä, Tiina ; Hughes, Mark ; Magalhães, Washington L.E. ; Muniz, Graciela I.B. ; Tamminen, Tarja</creator><creatorcontrib>Lourençon, Tainise V. ; Alakurtti, Sami ; Virtanen, Tommi ; Jääskeläinen, Anna-Stiina ; Liitiä, Tiina ; Hughes, Mark ; Magalhães, Washington L.E. ; Muniz, Graciela I.B. ; Tamminen, Tarja</creatorcontrib><description>The substitution of phenol by lignin in phenol-formaldehyde (PF) resins is one of the most promising end uses of lignin valorization. Lignin from grasses and softwood has been the focus of the studies in this field as they present a higher number of theoretical reactive sites for resin synthesis. Herein we examined the composition and chemical reactivity of “less-reactive” hardwood lignin fractions and their performance in PF resins, synthesized by substituting 50 wt% of the phenol with lignin. Before resin synthesis, the samples were hydroxymethylated and the maximum formaldehyde consumption was recorded. By doing so, we observed that hardwood fractions consumed formaldehyde close to the theoretical calculation, whereas the reference softwood lignin consumed only about ¼ of the theoretical value. In the resin synthesis, we added formaldehyde to the formulation according to the measured maximum formaldehyde consumption. Thus, low values of free formaldehyde in lignin-PF (LPF) resins were achieved (<0.23%). Moreover, the resin bonding strength displayed similar performance irrespective of whether the LPF resins were made with softwood or hardwood lignin (range of 3.4–4.8 N mm
at 150°C and 45–480 s of press time). Furthermore, we concluded that hardwood kraft lignins present no disadvantage compared to softwood lignins in PF resin applications, which have significant practical implications.</description><identifier>ISSN: 0018-3830</identifier><identifier>EISSN: 1437-434X</identifier><identifier>DOI: 10.1515/hf-2018-0203</identifier><language>eng</language><publisher>Berlin: De Gruyter</publisher><subject>Aldehydes ; Bonding strength ; Chemical composition ; Chemical reactions ; Consumption ; Formaldehyde ; formaldehyde consumption ; Hardwoods ; kraft ; Lignin ; Phenol formaldehyde resins ; phenolic resins ; Phenols ; Polymers ; reactive sites ; Resin bonding ; Resins ; Softwoods ; technical lignin</subject><ispartof>Holzforschung, 2020-02, Vol.74 (2), p.175-183</ispartof><rights>2020 Walter de Gruyter GmbH, Berlin/Boston</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-2b3e267a06e07c936f3d45acac7d565aab3ca4f432056a9ea33fd345cb104d383</citedby><cites>FETCH-LOGICAL-c389t-2b3e267a06e07c936f3d45acac7d565aab3ca4f432056a9ea33fd345cb104d383</cites><orcidid>0000-0001-9043-5128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/hf-2018-0203/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/hf-2018-0203/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,66497,68281</link.rule.ids></links><search><creatorcontrib>Lourençon, Tainise V.</creatorcontrib><creatorcontrib>Alakurtti, Sami</creatorcontrib><creatorcontrib>Virtanen, Tommi</creatorcontrib><creatorcontrib>Jääskeläinen, Anna-Stiina</creatorcontrib><creatorcontrib>Liitiä, Tiina</creatorcontrib><creatorcontrib>Hughes, Mark</creatorcontrib><creatorcontrib>Magalhães, Washington L.E.</creatorcontrib><creatorcontrib>Muniz, Graciela I.B.</creatorcontrib><creatorcontrib>Tamminen, Tarja</creatorcontrib><title>Phenol-formaldehyde resins with suitable bonding strength synthesized from “less-reactive” hardwood lignin fractions</title><title>Holzforschung</title><description>The substitution of phenol by lignin in phenol-formaldehyde (PF) resins is one of the most promising end uses of lignin valorization. Lignin from grasses and softwood has been the focus of the studies in this field as they present a higher number of theoretical reactive sites for resin synthesis. Herein we examined the composition and chemical reactivity of “less-reactive” hardwood lignin fractions and their performance in PF resins, synthesized by substituting 50 wt% of the phenol with lignin. Before resin synthesis, the samples were hydroxymethylated and the maximum formaldehyde consumption was recorded. By doing so, we observed that hardwood fractions consumed formaldehyde close to the theoretical calculation, whereas the reference softwood lignin consumed only about ¼ of the theoretical value. In the resin synthesis, we added formaldehyde to the formulation according to the measured maximum formaldehyde consumption. Thus, low values of free formaldehyde in lignin-PF (LPF) resins were achieved (<0.23%). Moreover, the resin bonding strength displayed similar performance irrespective of whether the LPF resins were made with softwood or hardwood lignin (range of 3.4–4.8 N mm
at 150°C and 45–480 s of press time). Furthermore, we concluded that hardwood kraft lignins present no disadvantage compared to softwood lignins in PF resin applications, which have significant practical implications.</description><subject>Aldehydes</subject><subject>Bonding strength</subject><subject>Chemical composition</subject><subject>Chemical reactions</subject><subject>Consumption</subject><subject>Formaldehyde</subject><subject>formaldehyde consumption</subject><subject>Hardwoods</subject><subject>kraft</subject><subject>Lignin</subject><subject>Phenol formaldehyde resins</subject><subject>phenolic resins</subject><subject>Phenols</subject><subject>Polymers</subject><subject>reactive sites</subject><subject>Resin bonding</subject><subject>Resins</subject><subject>Softwoods</subject><subject>technical lignin</subject><issn>0018-3830</issn><issn>1437-434X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptkEtOwzAQhi0EEuWx4wCW2BKwM3bSskMVLwkJFiCxi5x43ASldrFTSlj1IHA5ToKjIrFhNa9v_tH8hBxxdsoll2e1SVLGxwlLGWyREReQJwLE8zYZsaEPY2C7ZC-El1hKBnxE3h9qtK5NjPNz1Wqse43UY2hsoKumq2lYNp0qW6Sls7qxMxo6j3Y2THrb1ZH8QE2Nd3P6vf5sMYTEo6q65g2_11-0Vl6vnNO0bWa2sREcZs6GA7JjVBvw8Dfuk6ery8fpTXJ3f307vbhLKhhPuiQtAdMsVyxDllcTyAxoIVWlqlzLTCpVQqWEEZAymakJKgCjQciq5Ezo-PA-Od7oLrx7XWLoihe39DaeLFKYCJFH43ikTjZU5V0IHk2x8M1c-b7grBi8LWpTDN4Wg7cRP9_gK9V26DXO_LKPyZ_2f2u5SHku4Qekn4RH</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Lourençon, Tainise V.</creator><creator>Alakurtti, Sami</creator><creator>Virtanen, Tommi</creator><creator>Jääskeläinen, Anna-Stiina</creator><creator>Liitiä, Tiina</creator><creator>Hughes, Mark</creator><creator>Magalhães, Washington L.E.</creator><creator>Muniz, Graciela I.B.</creator><creator>Tamminen, Tarja</creator><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0001-9043-5128</orcidid></search><sort><creationdate>20200201</creationdate><title>Phenol-formaldehyde resins with suitable bonding strength synthesized from “less-reactive” hardwood lignin fractions</title><author>Lourençon, Tainise V. ; Alakurtti, Sami ; Virtanen, Tommi ; Jääskeläinen, Anna-Stiina ; Liitiä, Tiina ; Hughes, Mark ; Magalhães, Washington L.E. ; Muniz, Graciela I.B. ; Tamminen, Tarja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-2b3e267a06e07c936f3d45acac7d565aab3ca4f432056a9ea33fd345cb104d383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aldehydes</topic><topic>Bonding strength</topic><topic>Chemical composition</topic><topic>Chemical reactions</topic><topic>Consumption</topic><topic>Formaldehyde</topic><topic>formaldehyde consumption</topic><topic>Hardwoods</topic><topic>kraft</topic><topic>Lignin</topic><topic>Phenol formaldehyde resins</topic><topic>phenolic resins</topic><topic>Phenols</topic><topic>Polymers</topic><topic>reactive sites</topic><topic>Resin bonding</topic><topic>Resins</topic><topic>Softwoods</topic><topic>technical lignin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lourençon, Tainise V.</creatorcontrib><creatorcontrib>Alakurtti, Sami</creatorcontrib><creatorcontrib>Virtanen, Tommi</creatorcontrib><creatorcontrib>Jääskeläinen, Anna-Stiina</creatorcontrib><creatorcontrib>Liitiä, Tiina</creatorcontrib><creatorcontrib>Hughes, Mark</creatorcontrib><creatorcontrib>Magalhães, Washington L.E.</creatorcontrib><creatorcontrib>Muniz, Graciela I.B.</creatorcontrib><creatorcontrib>Tamminen, Tarja</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Holzforschung</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lourençon, Tainise V.</au><au>Alakurtti, Sami</au><au>Virtanen, Tommi</au><au>Jääskeläinen, Anna-Stiina</au><au>Liitiä, Tiina</au><au>Hughes, Mark</au><au>Magalhães, Washington L.E.</au><au>Muniz, Graciela I.B.</au><au>Tamminen, Tarja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phenol-formaldehyde resins with suitable bonding strength synthesized from “less-reactive” hardwood lignin fractions</atitle><jtitle>Holzforschung</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>74</volume><issue>2</issue><spage>175</spage><epage>183</epage><pages>175-183</pages><issn>0018-3830</issn><eissn>1437-434X</eissn><abstract>The substitution of phenol by lignin in phenol-formaldehyde (PF) resins is one of the most promising end uses of lignin valorization. Lignin from grasses and softwood has been the focus of the studies in this field as they present a higher number of theoretical reactive sites for resin synthesis. Herein we examined the composition and chemical reactivity of “less-reactive” hardwood lignin fractions and their performance in PF resins, synthesized by substituting 50 wt% of the phenol with lignin. Before resin synthesis, the samples were hydroxymethylated and the maximum formaldehyde consumption was recorded. By doing so, we observed that hardwood fractions consumed formaldehyde close to the theoretical calculation, whereas the reference softwood lignin consumed only about ¼ of the theoretical value. In the resin synthesis, we added formaldehyde to the formulation according to the measured maximum formaldehyde consumption. Thus, low values of free formaldehyde in lignin-PF (LPF) resins were achieved (<0.23%). Moreover, the resin bonding strength displayed similar performance irrespective of whether the LPF resins were made with softwood or hardwood lignin (range of 3.4–4.8 N mm
at 150°C and 45–480 s of press time). Furthermore, we concluded that hardwood kraft lignins present no disadvantage compared to softwood lignins in PF resin applications, which have significant practical implications.</abstract><cop>Berlin</cop><pub>De Gruyter</pub><doi>10.1515/hf-2018-0203</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9043-5128</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-3830 |
ispartof | Holzforschung, 2020-02, Vol.74 (2), p.175-183 |
issn | 0018-3830 1437-434X |
language | eng |
recordid | cdi_proquest_journals_2394475151 |
source | De Gruyter journals |
subjects | Aldehydes Bonding strength Chemical composition Chemical reactions Consumption Formaldehyde formaldehyde consumption Hardwoods kraft Lignin Phenol formaldehyde resins phenolic resins Phenols Polymers reactive sites Resin bonding Resins Softwoods technical lignin |
title | Phenol-formaldehyde resins with suitable bonding strength synthesized from “less-reactive” hardwood lignin fractions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A28%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phenol-formaldehyde%20resins%20with%20suitable%20bonding%20strength%20synthesized%20from%20%E2%80%9Cless-reactive%E2%80%9D%20hardwood%20lignin%20fractions&rft.jtitle=Holzforschung&rft.au=Louren%C3%A7on,%20Tainise%20V.&rft.date=2020-02-01&rft.volume=74&rft.issue=2&rft.spage=175&rft.epage=183&rft.pages=175-183&rft.issn=0018-3830&rft.eissn=1437-434X&rft_id=info:doi/10.1515/hf-2018-0203&rft_dat=%3Cproquest_cross%3E2394475151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2394475151&rft_id=info:pmid/&rfr_iscdi=true |