Laplace and Hua Luogeng Operators
We define holomorphic and pluri-harmonic functions in classical E. Cartan domains of the first type, and research Laplace and Hua Luogeng operators. We find a connection between these operators.
Gespeichert in:
Veröffentlicht in: | Russian mathematics 2020-03, Vol.64 (3), p.66-71 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 71 |
---|---|
container_issue | 3 |
container_start_page | 66 |
container_title | Russian mathematics |
container_volume | 64 |
creator | Khudayberganov, G. Khalknazarov, A. M. Abdullayev, J. Sh |
description | We define holomorphic and pluri-harmonic functions in classical E. Cartan domains of the first type, and research Laplace and Hua Luogeng operators. We find a connection between these operators. |
doi_str_mv | 10.3103/S1066369X20030068 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2394328417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2394328417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-68b946c02bc6d3aee8330a8b84a449689dfd82a2e69882beaf20cd0d18b2ea5c3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Vz9XJn42ToyzqCoU9qLC3ME3SxWVta9Ie_PZmqeBBPM2D935v4DF2yeFGcpC3Lxy0ltpsBIAE0HjEZtxIVSKHzXHW2S4P_ik7S2kHsNBC6Rm7qqjfkwsFtb5YjVRUY7cN7bZY9yHS0MV0zk4a2qdw8XPn7O3x4XW5Kqv10_Pyviqd0DiUGmujtANRO-0lhYBSAmGNipQyGo1vPAoSQRtEUQdqBDgPnmMtAi2cnLPrqbeP3ecY0mB33Rjb_NIKaZQUqPhdTvEp5WKXUgyN7eP7B8Uvy8EelrB_lsiMmJiUs-02xN_m_6Fv7fleOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2394328417</pqid></control><display><type>article</type><title>Laplace and Hua Luogeng Operators</title><source>SpringerNature Journals</source><creator>Khudayberganov, G. ; Khalknazarov, A. M. ; Abdullayev, J. Sh</creator><creatorcontrib>Khudayberganov, G. ; Khalknazarov, A. M. ; Abdullayev, J. Sh</creatorcontrib><description>We define holomorphic and pluri-harmonic functions in classical E. Cartan domains of the first type, and research Laplace and Hua Luogeng operators. We find a connection between these operators.</description><identifier>ISSN: 1066-369X</identifier><identifier>EISSN: 1934-810X</identifier><identifier>DOI: 10.3103/S1066369X20030068</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Harmonic functions ; Mathematics ; Mathematics and Statistics ; Operators</subject><ispartof>Russian mathematics, 2020-03, Vol.64 (3), p.66-71</ispartof><rights>Allerton Press, Inc. 2020</rights><rights>Allerton Press, Inc. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1066369X20030068$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1066369X20030068$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Khudayberganov, G.</creatorcontrib><creatorcontrib>Khalknazarov, A. M.</creatorcontrib><creatorcontrib>Abdullayev, J. Sh</creatorcontrib><title>Laplace and Hua Luogeng Operators</title><title>Russian mathematics</title><addtitle>Russ Math</addtitle><description>We define holomorphic and pluri-harmonic functions in classical E. Cartan domains of the first type, and research Laplace and Hua Luogeng operators. We find a connection between these operators.</description><subject>Harmonic functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators</subject><issn>1066-369X</issn><issn>1934-810X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8Vz9XJn42ToyzqCoU9qLC3ME3SxWVta9Ie_PZmqeBBPM2D935v4DF2yeFGcpC3Lxy0ltpsBIAE0HjEZtxIVSKHzXHW2S4P_ik7S2kHsNBC6Rm7qqjfkwsFtb5YjVRUY7cN7bZY9yHS0MV0zk4a2qdw8XPn7O3x4XW5Kqv10_Pyviqd0DiUGmujtANRO-0lhYBSAmGNipQyGo1vPAoSQRtEUQdqBDgPnmMtAi2cnLPrqbeP3ecY0mB33Rjb_NIKaZQUqPhdTvEp5WKXUgyN7eP7B8Uvy8EelrB_lsiMmJiUs-02xN_m_6Fv7fleOg</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Khudayberganov, G.</creator><creator>Khalknazarov, A. M.</creator><creator>Abdullayev, J. Sh</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200301</creationdate><title>Laplace and Hua Luogeng Operators</title><author>Khudayberganov, G. ; Khalknazarov, A. M. ; Abdullayev, J. Sh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-68b946c02bc6d3aee8330a8b84a449689dfd82a2e69882beaf20cd0d18b2ea5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Harmonic functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khudayberganov, G.</creatorcontrib><creatorcontrib>Khalknazarov, A. M.</creatorcontrib><creatorcontrib>Abdullayev, J. Sh</creatorcontrib><collection>CrossRef</collection><jtitle>Russian mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khudayberganov, G.</au><au>Khalknazarov, A. M.</au><au>Abdullayev, J. Sh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laplace and Hua Luogeng Operators</atitle><jtitle>Russian mathematics</jtitle><stitle>Russ Math</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>64</volume><issue>3</issue><spage>66</spage><epage>71</epage><pages>66-71</pages><issn>1066-369X</issn><eissn>1934-810X</eissn><abstract>We define holomorphic and pluri-harmonic functions in classical E. Cartan domains of the first type, and research Laplace and Hua Luogeng operators. We find a connection between these operators.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S1066369X20030068</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1066-369X |
ispartof | Russian mathematics, 2020-03, Vol.64 (3), p.66-71 |
issn | 1066-369X 1934-810X |
language | eng |
recordid | cdi_proquest_journals_2394328417 |
source | SpringerNature Journals |
subjects | Harmonic functions Mathematics Mathematics and Statistics Operators |
title | Laplace and Hua Luogeng Operators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T14%3A30%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laplace%20and%20Hua%20Luogeng%20Operators&rft.jtitle=Russian%20mathematics&rft.au=Khudayberganov,%20G.&rft.date=2020-03-01&rft.volume=64&rft.issue=3&rft.spage=66&rft.epage=71&rft.pages=66-71&rft.issn=1066-369X&rft.eissn=1934-810X&rft_id=info:doi/10.3103/S1066369X20030068&rft_dat=%3Cproquest_cross%3E2394328417%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2394328417&rft_id=info:pmid/&rfr_iscdi=true |