On the Functional Independence of Zeta-Functions of Certain Cusp Forms
The zeta-function ζ ( s, F), s = σ + it of a cusp form F of weight κ in the half-plane σ > (κ + 1) / 2 is defined by the Dirichlet series whose coefficients are the coefficients of the Fourier series of the form F. The compositions V(ζ(s,F)) with an operator V on the space of analytic functions a...
Gespeichert in:
Veröffentlicht in: | Mathematical Notes 2020-03, Vol.107 (3-4), p.609-617 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The zeta-function
ζ
(
s, F), s = σ + it
of a cusp form
F
of weight
κ
in the half-plane
σ > (κ +
1)
/
2 is defined by the Dirichlet series whose coefficients are the coefficients of the Fourier series of the form
F.
The compositions
V(ζ(s,F))
with an operator
V
on the space of analytic functions are considered, and the functional independence of these compositions for certain classes of operators
V
is proved. |
---|---|
ISSN: | 0001-4346 1067-9073 1573-8876 |
DOI: | 10.1134/S0001434620030281 |