On the Functional Independence of Zeta-Functions of Certain Cusp Forms

The zeta-function ζ ( s, F), s = σ + it of a cusp form F of weight κ in the half-plane σ > (κ + 1) / 2 is defined by the Dirichlet series whose coefficients are the coefficients of the Fourier series of the form F. The compositions V(ζ(s,F)) with an operator V on the space of analytic functions a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Notes 2020-03, Vol.107 (3-4), p.609-617
1. Verfasser: Laurinčikas, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The zeta-function ζ ( s, F), s = σ + it of a cusp form F of weight κ in the half-plane σ > (κ + 1) / 2 is defined by the Dirichlet series whose coefficients are the coefficients of the Fourier series of the form F. The compositions V(ζ(s,F)) with an operator V on the space of analytic functions are considered, and the functional independence of these compositions for certain classes of operators V is proved.
ISSN:0001-4346
1067-9073
1573-8876
DOI:10.1134/S0001434620030281