Demand Smoothing in Military Microgrids Through Coordinated Direct Load Control
In small microgrids and individual branches of a bulk electrical grid, the aggregate electrical load can contain significant and frequent peaks caused by large individual loads. These peaks can reduce overall system efficiencies if generation resources, e.g., diesel generators, are dispatched based...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on smart grid 2020-05, Vol.11 (3), p.1917-1927 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1927 |
---|---|
container_issue | 3 |
container_start_page | 1917 |
container_title | IEEE transactions on smart grid |
container_volume | 11 |
creator | Shabshab, Spencer C. Lindahl, Peter A. Nowocin, J. Kendall Donnal, John Blum, David Norford, Les Leeb, Steven B. |
description | In small microgrids and individual branches of a bulk electrical grid, the aggregate electrical load can contain significant and frequent peaks caused by large individual loads. These peaks can reduce overall system efficiencies if generation resources, e.g., diesel generators, are dispatched based on peak demand. This problem is particularly severe in military forward operating base (FOB) microgrids, in which the load profile is dominated by environmental control units (ECUs) that operate under thermostatic control. Leveraging the intrinsic energy storage capabilities associated with large loads such as these ECUs and coordinating their operations across neighboring facilities provides an opportunity to reduce peak demand while maintaining system performance. Using a military FOB microgrid as a use case, this paper presents two direct load control (DLC) algorithms for coordinating ECU operations and reducing peak demand. This coordinated control is demonstrated through simulations and field tests at the U.S. Army's Base Camp Integration Laboratory using novel controller hardware. Both simulation and field tests indicate that the DLC algorithms can reduce peak loads by 25% or more without sacrificing thermal comfort. |
doi_str_mv | 10.1109/TSG.2019.2945278 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2393787809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8854899</ieee_id><sourcerecordid>2393787809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b8702515d48db33a42c2a4f86540c44e79662e7fcb92cdebc6fcb2a4d7d805173</originalsourceid><addsrcrecordid>eNo9kM1rAjEQxUNpoWK9F3oJ9Lw2n5vkWLTVgsWD9hyySVYjurHZeOh_34jiXOYx_GaG9wB4xmiMMVJv69VsTBBWY6IYJ0LegQFWTFUU1fj-pjl9BKO-36FSlNKaqAFYTv3BdA6uDjHmbeg2MHTwO-xDNumvCJviJgXXw_U2xdNmCycxJhc6k72D05C8zXARjSvzLqe4fwIPrdn3fnTtQ_Dz-bGezKvFcvY1eV9Uliicq0YKRDjmjknXUGoYscSwVtacIcuYF6quiRetbRSxzje2LrIQTjiJOBZ0CF4vd48p_p58n_UunlJXXmpCFRVSSKQKhS5UsdH3ybf6mMKhONMY6XNyuiSnz8npa3Jl5eWyErz3N1xKzqRS9B-8g2lp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393787809</pqid></control><display><type>article</type><title>Demand Smoothing in Military Microgrids Through Coordinated Direct Load Control</title><source>IEEE Electronic Library (IEL)</source><creator>Shabshab, Spencer C. ; Lindahl, Peter A. ; Nowocin, J. Kendall ; Donnal, John ; Blum, David ; Norford, Les ; Leeb, Steven B.</creator><creatorcontrib>Shabshab, Spencer C. ; Lindahl, Peter A. ; Nowocin, J. Kendall ; Donnal, John ; Blum, David ; Norford, Les ; Leeb, Steven B.</creatorcontrib><description>In small microgrids and individual branches of a bulk electrical grid, the aggregate electrical load can contain significant and frequent peaks caused by large individual loads. These peaks can reduce overall system efficiencies if generation resources, e.g., diesel generators, are dispatched based on peak demand. This problem is particularly severe in military forward operating base (FOB) microgrids, in which the load profile is dominated by environmental control units (ECUs) that operate under thermostatic control. Leveraging the intrinsic energy storage capabilities associated with large loads such as these ECUs and coordinating their operations across neighboring facilities provides an opportunity to reduce peak demand while maintaining system performance. Using a military FOB microgrid as a use case, this paper presents two direct load control (DLC) algorithms for coordinating ECU operations and reducing peak demand. This coordinated control is demonstrated through simulations and field tests at the U.S. Army's Base Camp Integration Laboratory using novel controller hardware. Both simulation and field tests indicate that the DLC algorithms can reduce peak loads by 25% or more without sacrificing thermal comfort.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2019.2945278</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; centralized control ; Computer simulation ; Control equipment ; Demand ; demand-side management ; Diesel generators ; Distributed generation ; Electrical loads ; Energy management ; Energy storage ; Environmental control ; Field study ; Field tests ; Fuels ; Generators ; heating systems ; Heuristic algorithms ; Load modeling ; Microgrids ; Military ; Peak load ; smart grids ; temperature control ; Thermal comfort ; Water heating</subject><ispartof>IEEE transactions on smart grid, 2020-05, Vol.11 (3), p.1917-1927</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b8702515d48db33a42c2a4f86540c44e79662e7fcb92cdebc6fcb2a4d7d805173</citedby><cites>FETCH-LOGICAL-c291t-b8702515d48db33a42c2a4f86540c44e79662e7fcb92cdebc6fcb2a4d7d805173</cites><orcidid>0000-0002-3856-6005 ; 0000-0003-2597-5309 ; 0000-0001-5364-3868 ; 0000-0002-5631-7256</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8854899$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8854899$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shabshab, Spencer C.</creatorcontrib><creatorcontrib>Lindahl, Peter A.</creatorcontrib><creatorcontrib>Nowocin, J. Kendall</creatorcontrib><creatorcontrib>Donnal, John</creatorcontrib><creatorcontrib>Blum, David</creatorcontrib><creatorcontrib>Norford, Les</creatorcontrib><creatorcontrib>Leeb, Steven B.</creatorcontrib><title>Demand Smoothing in Military Microgrids Through Coordinated Direct Load Control</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>In small microgrids and individual branches of a bulk electrical grid, the aggregate electrical load can contain significant and frequent peaks caused by large individual loads. These peaks can reduce overall system efficiencies if generation resources, e.g., diesel generators, are dispatched based on peak demand. This problem is particularly severe in military forward operating base (FOB) microgrids, in which the load profile is dominated by environmental control units (ECUs) that operate under thermostatic control. Leveraging the intrinsic energy storage capabilities associated with large loads such as these ECUs and coordinating their operations across neighboring facilities provides an opportunity to reduce peak demand while maintaining system performance. Using a military FOB microgrid as a use case, this paper presents two direct load control (DLC) algorithms for coordinating ECU operations and reducing peak demand. This coordinated control is demonstrated through simulations and field tests at the U.S. Army's Base Camp Integration Laboratory using novel controller hardware. Both simulation and field tests indicate that the DLC algorithms can reduce peak loads by 25% or more without sacrificing thermal comfort.</description><subject>Algorithms</subject><subject>centralized control</subject><subject>Computer simulation</subject><subject>Control equipment</subject><subject>Demand</subject><subject>demand-side management</subject><subject>Diesel generators</subject><subject>Distributed generation</subject><subject>Electrical loads</subject><subject>Energy management</subject><subject>Energy storage</subject><subject>Environmental control</subject><subject>Field study</subject><subject>Field tests</subject><subject>Fuels</subject><subject>Generators</subject><subject>heating systems</subject><subject>Heuristic algorithms</subject><subject>Load modeling</subject><subject>Microgrids</subject><subject>Military</subject><subject>Peak load</subject><subject>smart grids</subject><subject>temperature control</subject><subject>Thermal comfort</subject><subject>Water heating</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1rAjEQxUNpoWK9F3oJ9Lw2n5vkWLTVgsWD9hyySVYjurHZeOh_34jiXOYx_GaG9wB4xmiMMVJv69VsTBBWY6IYJ0LegQFWTFUU1fj-pjl9BKO-36FSlNKaqAFYTv3BdA6uDjHmbeg2MHTwO-xDNumvCJviJgXXw_U2xdNmCycxJhc6k72D05C8zXARjSvzLqe4fwIPrdn3fnTtQ_Dz-bGezKvFcvY1eV9Uliicq0YKRDjmjknXUGoYscSwVtacIcuYF6quiRetbRSxzje2LrIQTjiJOBZ0CF4vd48p_p58n_UunlJXXmpCFRVSSKQKhS5UsdH3ybf6mMKhONMY6XNyuiSnz8npa3Jl5eWyErz3N1xKzqRS9B-8g2lp</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Shabshab, Spencer C.</creator><creator>Lindahl, Peter A.</creator><creator>Nowocin, J. Kendall</creator><creator>Donnal, John</creator><creator>Blum, David</creator><creator>Norford, Les</creator><creator>Leeb, Steven B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3856-6005</orcidid><orcidid>https://orcid.org/0000-0003-2597-5309</orcidid><orcidid>https://orcid.org/0000-0001-5364-3868</orcidid><orcidid>https://orcid.org/0000-0002-5631-7256</orcidid></search><sort><creationdate>20200501</creationdate><title>Demand Smoothing in Military Microgrids Through Coordinated Direct Load Control</title><author>Shabshab, Spencer C. ; Lindahl, Peter A. ; Nowocin, J. Kendall ; Donnal, John ; Blum, David ; Norford, Les ; Leeb, Steven B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b8702515d48db33a42c2a4f86540c44e79662e7fcb92cdebc6fcb2a4d7d805173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>centralized control</topic><topic>Computer simulation</topic><topic>Control equipment</topic><topic>Demand</topic><topic>demand-side management</topic><topic>Diesel generators</topic><topic>Distributed generation</topic><topic>Electrical loads</topic><topic>Energy management</topic><topic>Energy storage</topic><topic>Environmental control</topic><topic>Field study</topic><topic>Field tests</topic><topic>Fuels</topic><topic>Generators</topic><topic>heating systems</topic><topic>Heuristic algorithms</topic><topic>Load modeling</topic><topic>Microgrids</topic><topic>Military</topic><topic>Peak load</topic><topic>smart grids</topic><topic>temperature control</topic><topic>Thermal comfort</topic><topic>Water heating</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shabshab, Spencer C.</creatorcontrib><creatorcontrib>Lindahl, Peter A.</creatorcontrib><creatorcontrib>Nowocin, J. Kendall</creatorcontrib><creatorcontrib>Donnal, John</creatorcontrib><creatorcontrib>Blum, David</creatorcontrib><creatorcontrib>Norford, Les</creatorcontrib><creatorcontrib>Leeb, Steven B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shabshab, Spencer C.</au><au>Lindahl, Peter A.</au><au>Nowocin, J. Kendall</au><au>Donnal, John</au><au>Blum, David</au><au>Norford, Les</au><au>Leeb, Steven B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Demand Smoothing in Military Microgrids Through Coordinated Direct Load Control</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>11</volume><issue>3</issue><spage>1917</spage><epage>1927</epage><pages>1917-1927</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>In small microgrids and individual branches of a bulk electrical grid, the aggregate electrical load can contain significant and frequent peaks caused by large individual loads. These peaks can reduce overall system efficiencies if generation resources, e.g., diesel generators, are dispatched based on peak demand. This problem is particularly severe in military forward operating base (FOB) microgrids, in which the load profile is dominated by environmental control units (ECUs) that operate under thermostatic control. Leveraging the intrinsic energy storage capabilities associated with large loads such as these ECUs and coordinating their operations across neighboring facilities provides an opportunity to reduce peak demand while maintaining system performance. Using a military FOB microgrid as a use case, this paper presents two direct load control (DLC) algorithms for coordinating ECU operations and reducing peak demand. This coordinated control is demonstrated through simulations and field tests at the U.S. Army's Base Camp Integration Laboratory using novel controller hardware. Both simulation and field tests indicate that the DLC algorithms can reduce peak loads by 25% or more without sacrificing thermal comfort.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2019.2945278</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3856-6005</orcidid><orcidid>https://orcid.org/0000-0003-2597-5309</orcidid><orcidid>https://orcid.org/0000-0001-5364-3868</orcidid><orcidid>https://orcid.org/0000-0002-5631-7256</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1949-3053 |
ispartof | IEEE transactions on smart grid, 2020-05, Vol.11 (3), p.1917-1927 |
issn | 1949-3053 1949-3061 |
language | eng |
recordid | cdi_proquest_journals_2393787809 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms centralized control Computer simulation Control equipment Demand demand-side management Diesel generators Distributed generation Electrical loads Energy management Energy storage Environmental control Field study Field tests Fuels Generators heating systems Heuristic algorithms Load modeling Microgrids Military Peak load smart grids temperature control Thermal comfort Water heating |
title | Demand Smoothing in Military Microgrids Through Coordinated Direct Load Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A19%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Demand%20Smoothing%20in%20Military%20Microgrids%20Through%20Coordinated%20Direct%20Load%20Control&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Shabshab,%20Spencer%20C.&rft.date=2020-05-01&rft.volume=11&rft.issue=3&rft.spage=1917&rft.epage=1927&rft.pages=1917-1927&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2019.2945278&rft_dat=%3Cproquest_RIE%3E2393787809%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2393787809&rft_id=info:pmid/&rft_ieee_id=8854899&rfr_iscdi=true |