Demand Smoothing in Military Microgrids Through Coordinated Direct Load Control

In small microgrids and individual branches of a bulk electrical grid, the aggregate electrical load can contain significant and frequent peaks caused by large individual loads. These peaks can reduce overall system efficiencies if generation resources, e.g., diesel generators, are dispatched based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2020-05, Vol.11 (3), p.1917-1927
Hauptverfasser: Shabshab, Spencer C., Lindahl, Peter A., Nowocin, J. Kendall, Donnal, John, Blum, David, Norford, Les, Leeb, Steven B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1927
container_issue 3
container_start_page 1917
container_title IEEE transactions on smart grid
container_volume 11
creator Shabshab, Spencer C.
Lindahl, Peter A.
Nowocin, J. Kendall
Donnal, John
Blum, David
Norford, Les
Leeb, Steven B.
description In small microgrids and individual branches of a bulk electrical grid, the aggregate electrical load can contain significant and frequent peaks caused by large individual loads. These peaks can reduce overall system efficiencies if generation resources, e.g., diesel generators, are dispatched based on peak demand. This problem is particularly severe in military forward operating base (FOB) microgrids, in which the load profile is dominated by environmental control units (ECUs) that operate under thermostatic control. Leveraging the intrinsic energy storage capabilities associated with large loads such as these ECUs and coordinating their operations across neighboring facilities provides an opportunity to reduce peak demand while maintaining system performance. Using a military FOB microgrid as a use case, this paper presents two direct load control (DLC) algorithms for coordinating ECU operations and reducing peak demand. This coordinated control is demonstrated through simulations and field tests at the U.S. Army's Base Camp Integration Laboratory using novel controller hardware. Both simulation and field tests indicate that the DLC algorithms can reduce peak loads by 25% or more without sacrificing thermal comfort.
doi_str_mv 10.1109/TSG.2019.2945278
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2393787809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8854899</ieee_id><sourcerecordid>2393787809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b8702515d48db33a42c2a4f86540c44e79662e7fcb92cdebc6fcb2a4d7d805173</originalsourceid><addsrcrecordid>eNo9kM1rAjEQxUNpoWK9F3oJ9Lw2n5vkWLTVgsWD9hyySVYjurHZeOh_34jiXOYx_GaG9wB4xmiMMVJv69VsTBBWY6IYJ0LegQFWTFUU1fj-pjl9BKO-36FSlNKaqAFYTv3BdA6uDjHmbeg2MHTwO-xDNumvCJviJgXXw_U2xdNmCycxJhc6k72D05C8zXARjSvzLqe4fwIPrdn3fnTtQ_Dz-bGezKvFcvY1eV9Uliicq0YKRDjmjknXUGoYscSwVtacIcuYF6quiRetbRSxzje2LrIQTjiJOBZ0CF4vd48p_p58n_UunlJXXmpCFRVSSKQKhS5UsdH3ybf6mMKhONMY6XNyuiSnz8npa3Jl5eWyErz3N1xKzqRS9B-8g2lp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393787809</pqid></control><display><type>article</type><title>Demand Smoothing in Military Microgrids Through Coordinated Direct Load Control</title><source>IEEE Electronic Library (IEL)</source><creator>Shabshab, Spencer C. ; Lindahl, Peter A. ; Nowocin, J. Kendall ; Donnal, John ; Blum, David ; Norford, Les ; Leeb, Steven B.</creator><creatorcontrib>Shabshab, Spencer C. ; Lindahl, Peter A. ; Nowocin, J. Kendall ; Donnal, John ; Blum, David ; Norford, Les ; Leeb, Steven B.</creatorcontrib><description>In small microgrids and individual branches of a bulk electrical grid, the aggregate electrical load can contain significant and frequent peaks caused by large individual loads. These peaks can reduce overall system efficiencies if generation resources, e.g., diesel generators, are dispatched based on peak demand. This problem is particularly severe in military forward operating base (FOB) microgrids, in which the load profile is dominated by environmental control units (ECUs) that operate under thermostatic control. Leveraging the intrinsic energy storage capabilities associated with large loads such as these ECUs and coordinating their operations across neighboring facilities provides an opportunity to reduce peak demand while maintaining system performance. Using a military FOB microgrid as a use case, this paper presents two direct load control (DLC) algorithms for coordinating ECU operations and reducing peak demand. This coordinated control is demonstrated through simulations and field tests at the U.S. Army's Base Camp Integration Laboratory using novel controller hardware. Both simulation and field tests indicate that the DLC algorithms can reduce peak loads by 25% or more without sacrificing thermal comfort.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2019.2945278</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; centralized control ; Computer simulation ; Control equipment ; Demand ; demand-side management ; Diesel generators ; Distributed generation ; Electrical loads ; Energy management ; Energy storage ; Environmental control ; Field study ; Field tests ; Fuels ; Generators ; heating systems ; Heuristic algorithms ; Load modeling ; Microgrids ; Military ; Peak load ; smart grids ; temperature control ; Thermal comfort ; Water heating</subject><ispartof>IEEE transactions on smart grid, 2020-05, Vol.11 (3), p.1917-1927</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b8702515d48db33a42c2a4f86540c44e79662e7fcb92cdebc6fcb2a4d7d805173</citedby><cites>FETCH-LOGICAL-c291t-b8702515d48db33a42c2a4f86540c44e79662e7fcb92cdebc6fcb2a4d7d805173</cites><orcidid>0000-0002-3856-6005 ; 0000-0003-2597-5309 ; 0000-0001-5364-3868 ; 0000-0002-5631-7256</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8854899$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8854899$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shabshab, Spencer C.</creatorcontrib><creatorcontrib>Lindahl, Peter A.</creatorcontrib><creatorcontrib>Nowocin, J. Kendall</creatorcontrib><creatorcontrib>Donnal, John</creatorcontrib><creatorcontrib>Blum, David</creatorcontrib><creatorcontrib>Norford, Les</creatorcontrib><creatorcontrib>Leeb, Steven B.</creatorcontrib><title>Demand Smoothing in Military Microgrids Through Coordinated Direct Load Control</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>In small microgrids and individual branches of a bulk electrical grid, the aggregate electrical load can contain significant and frequent peaks caused by large individual loads. These peaks can reduce overall system efficiencies if generation resources, e.g., diesel generators, are dispatched based on peak demand. This problem is particularly severe in military forward operating base (FOB) microgrids, in which the load profile is dominated by environmental control units (ECUs) that operate under thermostatic control. Leveraging the intrinsic energy storage capabilities associated with large loads such as these ECUs and coordinating their operations across neighboring facilities provides an opportunity to reduce peak demand while maintaining system performance. Using a military FOB microgrid as a use case, this paper presents two direct load control (DLC) algorithms for coordinating ECU operations and reducing peak demand. This coordinated control is demonstrated through simulations and field tests at the U.S. Army's Base Camp Integration Laboratory using novel controller hardware. Both simulation and field tests indicate that the DLC algorithms can reduce peak loads by 25% or more without sacrificing thermal comfort.</description><subject>Algorithms</subject><subject>centralized control</subject><subject>Computer simulation</subject><subject>Control equipment</subject><subject>Demand</subject><subject>demand-side management</subject><subject>Diesel generators</subject><subject>Distributed generation</subject><subject>Electrical loads</subject><subject>Energy management</subject><subject>Energy storage</subject><subject>Environmental control</subject><subject>Field study</subject><subject>Field tests</subject><subject>Fuels</subject><subject>Generators</subject><subject>heating systems</subject><subject>Heuristic algorithms</subject><subject>Load modeling</subject><subject>Microgrids</subject><subject>Military</subject><subject>Peak load</subject><subject>smart grids</subject><subject>temperature control</subject><subject>Thermal comfort</subject><subject>Water heating</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1rAjEQxUNpoWK9F3oJ9Lw2n5vkWLTVgsWD9hyySVYjurHZeOh_34jiXOYx_GaG9wB4xmiMMVJv69VsTBBWY6IYJ0LegQFWTFUU1fj-pjl9BKO-36FSlNKaqAFYTv3BdA6uDjHmbeg2MHTwO-xDNumvCJviJgXXw_U2xdNmCycxJhc6k72D05C8zXARjSvzLqe4fwIPrdn3fnTtQ_Dz-bGezKvFcvY1eV9Uliicq0YKRDjmjknXUGoYscSwVtacIcuYF6quiRetbRSxzje2LrIQTjiJOBZ0CF4vd48p_p58n_UunlJXXmpCFRVSSKQKhS5UsdH3ybf6mMKhONMY6XNyuiSnz8npa3Jl5eWyErz3N1xKzqRS9B-8g2lp</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Shabshab, Spencer C.</creator><creator>Lindahl, Peter A.</creator><creator>Nowocin, J. Kendall</creator><creator>Donnal, John</creator><creator>Blum, David</creator><creator>Norford, Les</creator><creator>Leeb, Steven B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3856-6005</orcidid><orcidid>https://orcid.org/0000-0003-2597-5309</orcidid><orcidid>https://orcid.org/0000-0001-5364-3868</orcidid><orcidid>https://orcid.org/0000-0002-5631-7256</orcidid></search><sort><creationdate>20200501</creationdate><title>Demand Smoothing in Military Microgrids Through Coordinated Direct Load Control</title><author>Shabshab, Spencer C. ; Lindahl, Peter A. ; Nowocin, J. Kendall ; Donnal, John ; Blum, David ; Norford, Les ; Leeb, Steven B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b8702515d48db33a42c2a4f86540c44e79662e7fcb92cdebc6fcb2a4d7d805173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>centralized control</topic><topic>Computer simulation</topic><topic>Control equipment</topic><topic>Demand</topic><topic>demand-side management</topic><topic>Diesel generators</topic><topic>Distributed generation</topic><topic>Electrical loads</topic><topic>Energy management</topic><topic>Energy storage</topic><topic>Environmental control</topic><topic>Field study</topic><topic>Field tests</topic><topic>Fuels</topic><topic>Generators</topic><topic>heating systems</topic><topic>Heuristic algorithms</topic><topic>Load modeling</topic><topic>Microgrids</topic><topic>Military</topic><topic>Peak load</topic><topic>smart grids</topic><topic>temperature control</topic><topic>Thermal comfort</topic><topic>Water heating</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shabshab, Spencer C.</creatorcontrib><creatorcontrib>Lindahl, Peter A.</creatorcontrib><creatorcontrib>Nowocin, J. Kendall</creatorcontrib><creatorcontrib>Donnal, John</creatorcontrib><creatorcontrib>Blum, David</creatorcontrib><creatorcontrib>Norford, Les</creatorcontrib><creatorcontrib>Leeb, Steven B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shabshab, Spencer C.</au><au>Lindahl, Peter A.</au><au>Nowocin, J. Kendall</au><au>Donnal, John</au><au>Blum, David</au><au>Norford, Les</au><au>Leeb, Steven B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Demand Smoothing in Military Microgrids Through Coordinated Direct Load Control</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>11</volume><issue>3</issue><spage>1917</spage><epage>1927</epage><pages>1917-1927</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>In small microgrids and individual branches of a bulk electrical grid, the aggregate electrical load can contain significant and frequent peaks caused by large individual loads. These peaks can reduce overall system efficiencies if generation resources, e.g., diesel generators, are dispatched based on peak demand. This problem is particularly severe in military forward operating base (FOB) microgrids, in which the load profile is dominated by environmental control units (ECUs) that operate under thermostatic control. Leveraging the intrinsic energy storage capabilities associated with large loads such as these ECUs and coordinating their operations across neighboring facilities provides an opportunity to reduce peak demand while maintaining system performance. Using a military FOB microgrid as a use case, this paper presents two direct load control (DLC) algorithms for coordinating ECU operations and reducing peak demand. This coordinated control is demonstrated through simulations and field tests at the U.S. Army's Base Camp Integration Laboratory using novel controller hardware. Both simulation and field tests indicate that the DLC algorithms can reduce peak loads by 25% or more without sacrificing thermal comfort.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2019.2945278</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3856-6005</orcidid><orcidid>https://orcid.org/0000-0003-2597-5309</orcidid><orcidid>https://orcid.org/0000-0001-5364-3868</orcidid><orcidid>https://orcid.org/0000-0002-5631-7256</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2020-05, Vol.11 (3), p.1917-1927
issn 1949-3053
1949-3061
language eng
recordid cdi_proquest_journals_2393787809
source IEEE Electronic Library (IEL)
subjects Algorithms
centralized control
Computer simulation
Control equipment
Demand
demand-side management
Diesel generators
Distributed generation
Electrical loads
Energy management
Energy storage
Environmental control
Field study
Field tests
Fuels
Generators
heating systems
Heuristic algorithms
Load modeling
Microgrids
Military
Peak load
smart grids
temperature control
Thermal comfort
Water heating
title Demand Smoothing in Military Microgrids Through Coordinated Direct Load Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A19%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Demand%20Smoothing%20in%20Military%20Microgrids%20Through%20Coordinated%20Direct%20Load%20Control&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Shabshab,%20Spencer%20C.&rft.date=2020-05-01&rft.volume=11&rft.issue=3&rft.spage=1917&rft.epage=1927&rft.pages=1917-1927&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2019.2945278&rft_dat=%3Cproquest_RIE%3E2393787809%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2393787809&rft_id=info:pmid/&rft_ieee_id=8854899&rfr_iscdi=true