Tight Information Theoretic Converse Results for Some Pliable Index Coding Problems
This paper studies the Pliable Index CODing problem (PICOD), which models content-type distribution networks. In the PICOD ({t}) problem there are {m} messages, {n} users and each user has a distinct message side information set, as in the classical Index Coding problem (IC). Differently from I...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2020-05, Vol.66 (5), p.2642-2657 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2657 |
---|---|
container_issue | 5 |
container_start_page | 2642 |
container_title | IEEE transactions on information theory |
container_volume | 66 |
creator | Liu, Tang Tuninetti, Daniela |
description | This paper studies the Pliable Index CODing problem (PICOD), which models content-type distribution networks. In the PICOD ({t}) problem there are {m} messages, {n} users and each user has a distinct message side information set, as in the classical Index Coding problem (IC). Differently from IC, where each user has a pre-specified set of messages to decode, in the PICOD ({t}) a user is "pliable" and is satisfied if it can decode any {t} messages that are not in its side information set. The goal is to find a code with the shortest length that satisfies all the users. This flexibility in determining the desired message sets makes the PICOD ({t}) behave quite differently compared to the IC, and its analysis even more challenging. This paper mainly focuses on the complete - {S} PICOD ({t}) with {m} messages, where the set {S}\subset [{m}] contains the sizes of the side information sets, and the number of users is {n}=\sum _{s\in {S}}\binom {m} {s} , with no two users having the same side information set. Capacity results are shown for: (i) the consecutive complete- {S} PICOD ({t}) , where {S}=[{s}_{\text {min}}:{s}_{\text {max}}] for some 0 \leqslant {s}_{\text {min}}\leqslant {s}_{\text {max}} \leqslant {m}-{t} , and (ii) the complement-consecutive complete- {S} PICOD ({t}) |
doi_str_mv | 10.1109/TIT.2019.2947669 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2393785172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8871209</ieee_id><sourcerecordid>2393785172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-42194b0c8dc2011cc02f26948d4dfc254c4762045b7fb38c63c1e8687ce45f2b3</originalsourceid><addsrcrecordid>eNo9kNtLwzAUh4MoOKfvgi8BnztzbZJHGV4GgsPV59Cmp1tH28ykE_3vzdjwKZzw_c7lQ-iWkhmlxDwUi2LGCDUzZoTKc3OGJlRKlZlcinM0IYTqzAihL9FVjNtUCknZBK2Kdr0Z8WJofOjLsfUDLjbgA4ytw3M_fEOIgD8g7rsx4gThle8BL7u2rDpIuRp-Ele3wxovg09_fbxGF03ZRbg5vVP0-fxUzF-zt_eXxfzxLXOc8zETjBpREadrlxanzhHWsNwIXYu6cUwKlw5hRMhKNRXXLueOgs61ciBkwyo-RffHvrvgv_YQR7v1-zCkkZZxw5WWVLFEkSPlgo8xQGN3oe3L8GspsQd1NqmzB3X2pC5F7o6RFgD-ca0VZcTwP4lpaZ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393785172</pqid></control><display><type>article</type><title>Tight Information Theoretic Converse Results for Some Pliable Index Coding Problems</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Tang ; Tuninetti, Daniela</creator><creatorcontrib>Liu, Tang ; Tuninetti, Daniela</creatorcontrib><description><![CDATA[This paper studies the Pliable Index CODing problem (PICOD), which models content-type distribution networks. In the PICOD<inline-formula> <tex-math notation="LaTeX">({t}) </tex-math></inline-formula> problem there are <inline-formula> <tex-math notation="LaTeX">{m} </tex-math></inline-formula> messages, <inline-formula> <tex-math notation="LaTeX">{n} </tex-math></inline-formula> users and each user has a distinct message side information set, as in the classical Index Coding problem (IC). Differently from IC, where each user has a pre-specified set of messages to decode, in the PICOD<inline-formula> <tex-math notation="LaTeX">({t}) </tex-math></inline-formula> a user is "pliable" and is satisfied if it can decode any <inline-formula> <tex-math notation="LaTeX">{t} </tex-math></inline-formula> messages that are not in its side information set. The goal is to find a code with the shortest length that satisfies all the users. This flexibility in determining the desired message sets makes the PICOD<inline-formula> <tex-math notation="LaTeX">({t}) </tex-math></inline-formula> behave quite differently compared to the IC, and its analysis even more challenging. This paper mainly focuses on the complete -<inline-formula> <tex-math notation="LaTeX">{S} </tex-math></inline-formula> PICOD<inline-formula> <tex-math notation="LaTeX">({t}) </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">{m} </tex-math></inline-formula> messages, where the set <inline-formula> <tex-math notation="LaTeX">{S}\subset [{m}] </tex-math></inline-formula> contains the sizes of the side information sets, and the number of users is <inline-formula> <tex-math notation="LaTeX">{n}=\sum _{s\in {S}}\binom {m} {s} </tex-math></inline-formula>, with no two users having the same side information set. Capacity results are shown for: (i) the consecutive complete-<inline-formula> <tex-math notation="LaTeX">{S} </tex-math></inline-formula> PICOD<inline-formula> <tex-math notation="LaTeX">({t}) </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">{S}=[{s}_{\text {min}}:{s}_{\text {max}}] </tex-math></inline-formula> for some <inline-formula> <tex-math notation="LaTeX">0 \leqslant {s}_{\text {min}}\leqslant {s}_{\text {max}} \leqslant {m}-{t} </tex-math></inline-formula>, and (ii) the complement-consecutive complete-<inline-formula> <tex-math notation="LaTeX">{S} </tex-math></inline-formula> PICOD<inline-formula> <tex-math notation="LaTeX">({t}) </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">{S}=[0: {m}-{t}]\backslash [{s}_{\text {min}}:{s}_{\text {max}}] </tex-math></inline-formula>, for some <inline-formula> <tex-math notation="LaTeX">0 < {s}_{\text {min}}\leqslant {s}_{\text {max}} < {m}-{t} </tex-math></inline-formula>. The novel converse proof is inspired by combinatorial design techniques and the key insight is to consider all messages that a user can eventually decode successfully, even those in excess of the <inline-formula> <tex-math notation="LaTeX">{t} </tex-math></inline-formula> required ones. This allows one to circumvent the need to consider all possible desired message set assignments at the users in order to find the one that leads to the shortest code length. The core of the novel proof is to solve the critical complete-<inline-formula> <tex-math notation="LaTeX">{S} </tex-math></inline-formula> PICOD<inline-formula> <tex-math notation="LaTeX">({t}) </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">{m} = 2{s}+{t} </tex-math></inline-formula> messages and <inline-formula> <tex-math notation="LaTeX">{S}=\{{s}\} </tex-math></inline-formula>, by showing the existence of a user who can decode <inline-formula> <tex-math notation="LaTeX">{s}+{t} </tex-math></inline-formula> messages regardless of the desired message set assignment. All other tight converse results for the complete-<inline-formula> <tex-math notation="LaTeX">{S} </tex-math></inline-formula> PICOD<inline-formula> <tex-math notation="LaTeX">({t}) </tex-math></inline-formula> can be deduced from this critical case. The converse results show the information theoretic optimality of simple linear coding schemes. By similar reasoning, all complete-<inline-formula> <tex-math notation="LaTeX">{S} </tex-math></inline-formula> PICOD<inline-formula> <tex-math notation="LaTeX">({t}) </tex-math></inline-formula> where the number of messages is <inline-formula> <tex-math notation="LaTeX">{m}\leqslant 5 </tex-math></inline-formula> can be fully characterized. In addition, tight converse results are also shown for the PICOD(1) with circular-arc network topology hypergraph.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2019.2947669</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coding ; Combinatorial analysis ; combinatorial design ; converse bound ; Index coding (IC) ; Indexes ; Information theory ; Integrated circuit modeling ; Linear codes ; Messages ; Network coding ; Network topologies ; Pliable Index CODing (PICOD) ; Transmitters ; User satisfaction</subject><ispartof>IEEE transactions on information theory, 2020-05, Vol.66 (5), p.2642-2657</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-42194b0c8dc2011cc02f26948d4dfc254c4762045b7fb38c63c1e8687ce45f2b3</citedby><cites>FETCH-LOGICAL-c333t-42194b0c8dc2011cc02f26948d4dfc254c4762045b7fb38c63c1e8687ce45f2b3</cites><orcidid>0000-0003-1880-4798 ; 0000-0002-8851-1969</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8871209$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27906,27907,54740</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8871209$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Tang</creatorcontrib><creatorcontrib>Tuninetti, Daniela</creatorcontrib><title>Tight Information Theoretic Converse Results for Some Pliable Index Coding Problems</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description><![CDATA[This paper studies the Pliable Index CODing problem (PICOD), which models content-type distribution networks. In the PICOD<inline-formula> <tex-math notation="LaTeX">({t}) </tex-math></inline-formula> problem there are <inline-formula> <tex-math notation="LaTeX">{m} </tex-math></inline-formula> messages, <inline-formula> <tex-math notation="LaTeX">{n} </tex-math></inline-formula> users and each user has a distinct message side information set, as in the classical Index Coding problem (IC). Differently from IC, where each user has a pre-specified set of messages to decode, in the PICOD<inline-formula> <tex-math notation="LaTeX">({t}) </tex-math></inline-formula> a user is "pliable" and is satisfied if it can decode any <inline-formula> <tex-math notation="LaTeX">{t} </tex-math></inline-formula> messages that are not in its side information set. The goal is to find a code with the shortest length that satisfies all the users. This flexibility in determining the desired message sets makes the PICOD<inline-formula> <tex-math notation="LaTeX">({t}) </tex-math></inline-formula> behave quite differently compared to the IC, and its analysis even more challenging. This paper mainly focuses on the complete -<inline-formula> <tex-math notation="LaTeX">{S} </tex-math></inline-formula> PICOD<inline-formula> <tex-math notation="LaTeX">({t}) </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">{m} </tex-math></inline-formula> messages, where the set <inline-formula> <tex-math notation="LaTeX">{S}\subset [{m}] </tex-math></inline-formula> contains the sizes of the side information sets, and the number of users is <inline-formula> <tex-math notation="LaTeX">{n}=\sum _{s\in {S}}\binom {m} {s} </tex-math></inline-formula>, with no two users having the same side information set. Capacity results are shown for: (i) the consecutive complete-<inline-formula> <tex-math notation="LaTeX">{S} </tex-math></inline-formula> PICOD<inline-formula> <tex-math notation="LaTeX">({t}) </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">{S}=[{s}_{\text {min}}:{s}_{\text {max}}] </tex-math></inline-formula> for some <inline-formula> <tex-math notation="LaTeX">0 \leqslant {s}_{\text {min}}\leqslant {s}_{\text {max}} \leqslant {m}-{t} </tex-math></inline-formula>, and (ii) the complement-consecutive complete-<inline-formula> <tex-math notation="LaTeX">{S} </tex-math></inline-formula> PICOD<inline-formula> <tex-math notation="LaTeX">({t}) </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">{S}=[0: {m}-{t}]\backslash [{s}_{\text {min}}:{s}_{\text {max}}] </tex-math></inline-formula>, for some <inline-formula> <tex-math notation="LaTeX">0 < {s}_{\text {min}}\leqslant {s}_{\text {max}} < {m}-{t} </tex-math></inline-formula>. The novel converse proof is inspired by combinatorial design techniques and the key insight is to consider all messages that a user can eventually decode successfully, even those in excess of the <inline-formula> <tex-math notation="LaTeX">{t} </tex-math></inline-formula> required ones. This allows one to circumvent the need to consider all possible desired message set assignments at the users in order to find the one that leads to the shortest code length. The core of the novel proof is to solve the critical complete-<inline-formula> <tex-math notation="LaTeX">{S} </tex-math></inline-formula> PICOD<inline-formula> <tex-math notation="LaTeX">({t}) </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">{m} = 2{s}+{t} </tex-math></inline-formula> messages and <inline-formula> <tex-math notation="LaTeX">{S}=\{{s}\} </tex-math></inline-formula>, by showing the existence of a user who can decode <inline-formula> <tex-math notation="LaTeX">{s}+{t} </tex-math></inline-formula> messages regardless of the desired message set assignment. All other tight converse results for the complete-<inline-formula> <tex-math notation="LaTeX">{S} </tex-math></inline-formula> PICOD<inline-formula> <tex-math notation="LaTeX">({t}) </tex-math></inline-formula> can be deduced from this critical case. The converse results show the information theoretic optimality of simple linear coding schemes. By similar reasoning, all complete-<inline-formula> <tex-math notation="LaTeX">{S} </tex-math></inline-formula> PICOD<inline-formula> <tex-math notation="LaTeX">({t}) </tex-math></inline-formula> where the number of messages is <inline-formula> <tex-math notation="LaTeX">{m}\leqslant 5 </tex-math></inline-formula> can be fully characterized. In addition, tight converse results are also shown for the PICOD(1) with circular-arc network topology hypergraph.]]></description><subject>Coding</subject><subject>Combinatorial analysis</subject><subject>combinatorial design</subject><subject>converse bound</subject><subject>Index coding (IC)</subject><subject>Indexes</subject><subject>Information theory</subject><subject>Integrated circuit modeling</subject><subject>Linear codes</subject><subject>Messages</subject><subject>Network coding</subject><subject>Network topologies</subject><subject>Pliable Index CODing (PICOD)</subject><subject>Transmitters</subject><subject>User satisfaction</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNtLwzAUh4MoOKfvgi8BnztzbZJHGV4GgsPV59Cmp1tH28ykE_3vzdjwKZzw_c7lQ-iWkhmlxDwUi2LGCDUzZoTKc3OGJlRKlZlcinM0IYTqzAihL9FVjNtUCknZBK2Kdr0Z8WJofOjLsfUDLjbgA4ytw3M_fEOIgD8g7rsx4gThle8BL7u2rDpIuRp-Ele3wxovg09_fbxGF03ZRbg5vVP0-fxUzF-zt_eXxfzxLXOc8zETjBpREadrlxanzhHWsNwIXYu6cUwKlw5hRMhKNRXXLueOgs61ciBkwyo-RffHvrvgv_YQR7v1-zCkkZZxw5WWVLFEkSPlgo8xQGN3oe3L8GspsQd1NqmzB3X2pC5F7o6RFgD-ca0VZcTwP4lpaZ8</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Liu, Tang</creator><creator>Tuninetti, Daniela</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1880-4798</orcidid><orcidid>https://orcid.org/0000-0002-8851-1969</orcidid></search><sort><creationdate>20200501</creationdate><title>Tight Information Theoretic Converse Results for Some Pliable Index Coding Problems</title><author>Liu, Tang ; Tuninetti, Daniela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-42194b0c8dc2011cc02f26948d4dfc254c4762045b7fb38c63c1e8687ce45f2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coding</topic><topic>Combinatorial analysis</topic><topic>combinatorial design</topic><topic>converse bound</topic><topic>Index coding (IC)</topic><topic>Indexes</topic><topic>Information theory</topic><topic>Integrated circuit modeling</topic><topic>Linear codes</topic><topic>Messages</topic><topic>Network coding</topic><topic>Network topologies</topic><topic>Pliable Index CODing (PICOD)</topic><topic>Transmitters</topic><topic>User satisfaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Tang</creatorcontrib><creatorcontrib>Tuninetti, Daniela</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Tang</au><au>Tuninetti, Daniela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tight Information Theoretic Converse Results for Some Pliable Index Coding Problems</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>66</volume><issue>5</issue><spage>2642</spage><epage>2657</epage><pages>2642-2657</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[This paper studies the Pliable Index CODing problem (PICOD), which models content-type distribution networks. In the PICOD<inline-formula> <tex-math notation="LaTeX">({t}) </tex-math></inline-formula> problem there are <inline-formula> <tex-math notation="LaTeX">{m} </tex-math></inline-formula> messages, <inline-formula> <tex-math notation="LaTeX">{n} </tex-math></inline-formula> users and each user has a distinct message side information set, as in the classical Index Coding problem (IC). Differently from IC, where each user has a pre-specified set of messages to decode, in the PICOD<inline-formula> <tex-math notation="LaTeX">({t}) </tex-math></inline-formula> a user is "pliable" and is satisfied if it can decode any <inline-formula> <tex-math notation="LaTeX">{t} </tex-math></inline-formula> messages that are not in its side information set. The goal is to find a code with the shortest length that satisfies all the users. This flexibility in determining the desired message sets makes the PICOD<inline-formula> <tex-math notation="LaTeX">({t}) </tex-math></inline-formula> behave quite differently compared to the IC, and its analysis even more challenging. This paper mainly focuses on the complete -<inline-formula> <tex-math notation="LaTeX">{S} </tex-math></inline-formula> PICOD<inline-formula> <tex-math notation="LaTeX">({t}) </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">{m} </tex-math></inline-formula> messages, where the set <inline-formula> <tex-math notation="LaTeX">{S}\subset [{m}] </tex-math></inline-formula> contains the sizes of the side information sets, and the number of users is <inline-formula> <tex-math notation="LaTeX">{n}=\sum _{s\in {S}}\binom {m} {s} </tex-math></inline-formula>, with no two users having the same side information set. Capacity results are shown for: (i) the consecutive complete-<inline-formula> <tex-math notation="LaTeX">{S} </tex-math></inline-formula> PICOD<inline-formula> <tex-math notation="LaTeX">({t}) </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">{S}=[{s}_{\text {min}}:{s}_{\text {max}}] </tex-math></inline-formula> for some <inline-formula> <tex-math notation="LaTeX">0 \leqslant {s}_{\text {min}}\leqslant {s}_{\text {max}} \leqslant {m}-{t} </tex-math></inline-formula>, and (ii) the complement-consecutive complete-<inline-formula> <tex-math notation="LaTeX">{S} </tex-math></inline-formula> PICOD<inline-formula> <tex-math notation="LaTeX">({t}) </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">{S}=[0: {m}-{t}]\backslash [{s}_{\text {min}}:{s}_{\text {max}}] </tex-math></inline-formula>, for some <inline-formula> <tex-math notation="LaTeX">0 < {s}_{\text {min}}\leqslant {s}_{\text {max}} < {m}-{t} </tex-math></inline-formula>. The novel converse proof is inspired by combinatorial design techniques and the key insight is to consider all messages that a user can eventually decode successfully, even those in excess of the <inline-formula> <tex-math notation="LaTeX">{t} </tex-math></inline-formula> required ones. This allows one to circumvent the need to consider all possible desired message set assignments at the users in order to find the one that leads to the shortest code length. The core of the novel proof is to solve the critical complete-<inline-formula> <tex-math notation="LaTeX">{S} </tex-math></inline-formula> PICOD<inline-formula> <tex-math notation="LaTeX">({t}) </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">{m} = 2{s}+{t} </tex-math></inline-formula> messages and <inline-formula> <tex-math notation="LaTeX">{S}=\{{s}\} </tex-math></inline-formula>, by showing the existence of a user who can decode <inline-formula> <tex-math notation="LaTeX">{s}+{t} </tex-math></inline-formula> messages regardless of the desired message set assignment. All other tight converse results for the complete-<inline-formula> <tex-math notation="LaTeX">{S} </tex-math></inline-formula> PICOD<inline-formula> <tex-math notation="LaTeX">({t}) </tex-math></inline-formula> can be deduced from this critical case. The converse results show the information theoretic optimality of simple linear coding schemes. By similar reasoning, all complete-<inline-formula> <tex-math notation="LaTeX">{S} </tex-math></inline-formula> PICOD<inline-formula> <tex-math notation="LaTeX">({t}) </tex-math></inline-formula> where the number of messages is <inline-formula> <tex-math notation="LaTeX">{m}\leqslant 5 </tex-math></inline-formula> can be fully characterized. In addition, tight converse results are also shown for the PICOD(1) with circular-arc network topology hypergraph.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2019.2947669</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1880-4798</orcidid><orcidid>https://orcid.org/0000-0002-8851-1969</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2020-05, Vol.66 (5), p.2642-2657 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_journals_2393785172 |
source | IEEE Electronic Library (IEL) |
subjects | Coding Combinatorial analysis combinatorial design converse bound Index coding (IC) Indexes Information theory Integrated circuit modeling Linear codes Messages Network coding Network topologies Pliable Index CODing (PICOD) Transmitters User satisfaction |
title | Tight Information Theoretic Converse Results for Some Pliable Index Coding Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A27%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tight%20Information%20Theoretic%20Converse%20Results%20for%20Some%20Pliable%20Index%20Coding%20Problems&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Liu,%20Tang&rft.date=2020-05-01&rft.volume=66&rft.issue=5&rft.spage=2642&rft.epage=2657&rft.pages=2642-2657&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2019.2947669&rft_dat=%3Cproquest_RIE%3E2393785172%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2393785172&rft_id=info:pmid/&rft_ieee_id=8871209&rfr_iscdi=true |