Thermal hazardous evaluation of autocatalytic reaction of cumene hydroperoxide alone and mixed with products under isothermal and non-isothermal conditions

Severe fire and explosions are frequent phenomena during handling of organic peroxides that are promoted supremely by conditions such as chemical impurities and thermal instability. As an initiator in the polymerization process, cumene hydroperoxide (CHP) has wide usage in the chemical process indus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2020-06, Vol.140 (5), p.2325-2336
Hauptverfasser: Liu, Shang-Hao, Yu, Chang-Fei, Das, Mitali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2336
container_issue 5
container_start_page 2325
container_title Journal of thermal analysis and calorimetry
container_volume 140
creator Liu, Shang-Hao
Yu, Chang-Fei
Das, Mitali
description Severe fire and explosions are frequent phenomena during handling of organic peroxides that are promoted supremely by conditions such as chemical impurities and thermal instability. As an initiator in the polymerization process, cumene hydroperoxide (CHP) has wide usage in the chemical process industry. This violently reactive chemical is studied here experimentally using differential scanning calorimeter (DSC), an isothermal mode of operation that can access the thermal hazards in the decomposition of CHP alone and later mixed with products following an autocatalytic reaction scheme. Importantly, DSC-evaluated thermokinetic parameters such as reaction enthalpy (Δ H d ), time to maximum rate (TMR iso ), and maximum heat flow ( Q max ) were estimated to ascertain the degree of thermal hazard under various transportation and storage temperatures. The Heat-Wait-Search mode of accelerating rate calorimeter has been used to investigate decomposition kinetics parameters data under an adiabatic condition. Data such as initial exothermic temperature ( T 0 ), self-heating rate (d T/ d t ), pressure rise rate (d P/ d t ) and pressure–temperature profiles help to gauge the runaway reaction hazard of CHP alone and then mixed with its products to support the autocatalytic model of exothermic decomposition. The curve fitting data indicated that activation energy had reduced from 245.4 to 236.7 and 242.3 kJ mol −1 , when CHP was mixed with acetone or dicumyl peroxide, respectively. The decrease in activation energy for autocatalytic material thermal decomposition reaction is depicted here with various experimental findings and mathematical analysis.
doi_str_mv 10.1007/s10973-019-09017-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2393600784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A621718383</galeid><sourcerecordid>A621718383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-ae14810be37c6192d4dbe79fa4f2f66acbcbc2c071400f8c62fe7f9cf4b05cc33</originalsourceid><addsrcrecordid>eNp9kU1vFDEMhkcIJErpH-AUiROHKfmYnUyOVcVHpUpItD1H3sTZTTWTLEkGdvkr_FmyTBH0UvkQy3le2_LbNG8YPWeUyveZUSVFS5lqqaJMtvJZc8JWw9ByxfvnNRc179mKvmxe5XxPKVWVO2l-3W4xTTCSLfyEZOOcCX6HcYbiYyDREZhLNFBgPBRvSEIwf3_MPGFAsj3YFHeY4t5bJDDGWoNgyeT3aMkPX7Zkl6KdTclkDhYT8TmWh6lHMMTQ_lcyMVh_nJFfNy8cjBnPHt7T5u7jh9vLz-31l09XlxfXrem4Ki0g6wZG1yik6ZnitrNrlMpB57jrezDrGtxQyTpK3WB67lA6ZVy3pitjhDht3i59657fZsxF38c5hTpSc6FEXw88dJU6X6gNjKh9cLEkMDUsTr4ujc7X-kXPmWSDGI5t3z0SVKbgvmxgzllf3Xx9zPKFNSnmnNDpXfITpINmVB8d1ovDujqs_zisZRWJRZQrHDaY_u39hOo33uutiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393600784</pqid></control><display><type>article</type><title>Thermal hazardous evaluation of autocatalytic reaction of cumene hydroperoxide alone and mixed with products under isothermal and non-isothermal conditions</title><source>SpringerLink Journals</source><creator>Liu, Shang-Hao ; Yu, Chang-Fei ; Das, Mitali</creator><creatorcontrib>Liu, Shang-Hao ; Yu, Chang-Fei ; Das, Mitali</creatorcontrib><description>Severe fire and explosions are frequent phenomena during handling of organic peroxides that are promoted supremely by conditions such as chemical impurities and thermal instability. As an initiator in the polymerization process, cumene hydroperoxide (CHP) has wide usage in the chemical process industry. This violently reactive chemical is studied here experimentally using differential scanning calorimeter (DSC), an isothermal mode of operation that can access the thermal hazards in the decomposition of CHP alone and later mixed with products following an autocatalytic reaction scheme. Importantly, DSC-evaluated thermokinetic parameters such as reaction enthalpy (Δ H d ), time to maximum rate (TMR iso ), and maximum heat flow ( Q max ) were estimated to ascertain the degree of thermal hazard under various transportation and storage temperatures. The Heat-Wait-Search mode of accelerating rate calorimeter has been used to investigate decomposition kinetics parameters data under an adiabatic condition. Data such as initial exothermic temperature ( T 0 ), self-heating rate (d T/ d t ), pressure rise rate (d P/ d t ) and pressure–temperature profiles help to gauge the runaway reaction hazard of CHP alone and then mixed with its products to support the autocatalytic model of exothermic decomposition. The curve fitting data indicated that activation energy had reduced from 245.4 to 236.7 and 242.3 kJ mol −1 , when CHP was mixed with acetone or dicumyl peroxide, respectively. The decrease in activation energy for autocatalytic material thermal decomposition reaction is depicted here with various experimental findings and mathematical analysis.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-019-09017-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Acetone ; Activation energy ; Adiabatic conditions ; Analytical Chemistry ; Chemical process industries ; Chemistry ; Chemistry and Materials Science ; Cogeneration ; Cogeneration power plants ; Cumene ; Cumene hydroperoxide ; Curve fitting ; Decomposition ; Decomposition (Chemistry) ; Decomposition reactions ; Dicumyl peroxide ; Enthalpy ; Exothermic reactions ; Explosions ; Heat transmission ; Heating rate ; Inorganic Chemistry ; Measurement Science and Instrumentation ; Numerical analysis ; Operational hazards ; Organic peroxides ; Parameters ; Peroxides ; Physical Chemistry ; Polymer Sciences ; Polymerization ; Reaction kinetics ; Temperature profiles ; Thermal decomposition ; Thermal instability</subject><ispartof>Journal of thermal analysis and calorimetry, 2020-06, Vol.140 (5), p.2325-2336</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Akadémiai Kiadó, Budapest, Hungary 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-ae14810be37c6192d4dbe79fa4f2f66acbcbc2c071400f8c62fe7f9cf4b05cc33</citedby><cites>FETCH-LOGICAL-c429t-ae14810be37c6192d4dbe79fa4f2f66acbcbc2c071400f8c62fe7f9cf4b05cc33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-019-09017-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-019-09017-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Liu, Shang-Hao</creatorcontrib><creatorcontrib>Yu, Chang-Fei</creatorcontrib><creatorcontrib>Das, Mitali</creatorcontrib><title>Thermal hazardous evaluation of autocatalytic reaction of cumene hydroperoxide alone and mixed with products under isothermal and non-isothermal conditions</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>Severe fire and explosions are frequent phenomena during handling of organic peroxides that are promoted supremely by conditions such as chemical impurities and thermal instability. As an initiator in the polymerization process, cumene hydroperoxide (CHP) has wide usage in the chemical process industry. This violently reactive chemical is studied here experimentally using differential scanning calorimeter (DSC), an isothermal mode of operation that can access the thermal hazards in the decomposition of CHP alone and later mixed with products following an autocatalytic reaction scheme. Importantly, DSC-evaluated thermokinetic parameters such as reaction enthalpy (Δ H d ), time to maximum rate (TMR iso ), and maximum heat flow ( Q max ) were estimated to ascertain the degree of thermal hazard under various transportation and storage temperatures. The Heat-Wait-Search mode of accelerating rate calorimeter has been used to investigate decomposition kinetics parameters data under an adiabatic condition. Data such as initial exothermic temperature ( T 0 ), self-heating rate (d T/ d t ), pressure rise rate (d P/ d t ) and pressure–temperature profiles help to gauge the runaway reaction hazard of CHP alone and then mixed with its products to support the autocatalytic model of exothermic decomposition. The curve fitting data indicated that activation energy had reduced from 245.4 to 236.7 and 242.3 kJ mol −1 , when CHP was mixed with acetone or dicumyl peroxide, respectively. The decrease in activation energy for autocatalytic material thermal decomposition reaction is depicted here with various experimental findings and mathematical analysis.</description><subject>Acetone</subject><subject>Activation energy</subject><subject>Adiabatic conditions</subject><subject>Analytical Chemistry</subject><subject>Chemical process industries</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Cogeneration</subject><subject>Cogeneration power plants</subject><subject>Cumene</subject><subject>Cumene hydroperoxide</subject><subject>Curve fitting</subject><subject>Decomposition</subject><subject>Decomposition (Chemistry)</subject><subject>Decomposition reactions</subject><subject>Dicumyl peroxide</subject><subject>Enthalpy</subject><subject>Exothermic reactions</subject><subject>Explosions</subject><subject>Heat transmission</subject><subject>Heating rate</subject><subject>Inorganic Chemistry</subject><subject>Measurement Science and Instrumentation</subject><subject>Numerical analysis</subject><subject>Operational hazards</subject><subject>Organic peroxides</subject><subject>Parameters</subject><subject>Peroxides</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Polymerization</subject><subject>Reaction kinetics</subject><subject>Temperature profiles</subject><subject>Thermal decomposition</subject><subject>Thermal instability</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU1vFDEMhkcIJErpH-AUiROHKfmYnUyOVcVHpUpItD1H3sTZTTWTLEkGdvkr_FmyTBH0UvkQy3le2_LbNG8YPWeUyveZUSVFS5lqqaJMtvJZc8JWw9ByxfvnNRc179mKvmxe5XxPKVWVO2l-3W4xTTCSLfyEZOOcCX6HcYbiYyDREZhLNFBgPBRvSEIwf3_MPGFAsj3YFHeY4t5bJDDGWoNgyeT3aMkPX7Zkl6KdTclkDhYT8TmWh6lHMMTQ_lcyMVh_nJFfNy8cjBnPHt7T5u7jh9vLz-31l09XlxfXrem4Ki0g6wZG1yik6ZnitrNrlMpB57jrezDrGtxQyTpK3WB67lA6ZVy3pitjhDht3i59657fZsxF38c5hTpSc6FEXw88dJU6X6gNjKh9cLEkMDUsTr4ujc7X-kXPmWSDGI5t3z0SVKbgvmxgzllf3Xx9zPKFNSnmnNDpXfITpINmVB8d1ovDujqs_zisZRWJRZQrHDaY_u39hOo33uutiQ</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Liu, Shang-Hao</creator><creator>Yu, Chang-Fei</creator><creator>Das, Mitali</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20200601</creationdate><title>Thermal hazardous evaluation of autocatalytic reaction of cumene hydroperoxide alone and mixed with products under isothermal and non-isothermal conditions</title><author>Liu, Shang-Hao ; Yu, Chang-Fei ; Das, Mitali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-ae14810be37c6192d4dbe79fa4f2f66acbcbc2c071400f8c62fe7f9cf4b05cc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetone</topic><topic>Activation energy</topic><topic>Adiabatic conditions</topic><topic>Analytical Chemistry</topic><topic>Chemical process industries</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Cogeneration</topic><topic>Cogeneration power plants</topic><topic>Cumene</topic><topic>Cumene hydroperoxide</topic><topic>Curve fitting</topic><topic>Decomposition</topic><topic>Decomposition (Chemistry)</topic><topic>Decomposition reactions</topic><topic>Dicumyl peroxide</topic><topic>Enthalpy</topic><topic>Exothermic reactions</topic><topic>Explosions</topic><topic>Heat transmission</topic><topic>Heating rate</topic><topic>Inorganic Chemistry</topic><topic>Measurement Science and Instrumentation</topic><topic>Numerical analysis</topic><topic>Operational hazards</topic><topic>Organic peroxides</topic><topic>Parameters</topic><topic>Peroxides</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Polymerization</topic><topic>Reaction kinetics</topic><topic>Temperature profiles</topic><topic>Thermal decomposition</topic><topic>Thermal instability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shang-Hao</creatorcontrib><creatorcontrib>Yu, Chang-Fei</creatorcontrib><creatorcontrib>Das, Mitali</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Shang-Hao</au><au>Yu, Chang-Fei</au><au>Das, Mitali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal hazardous evaluation of autocatalytic reaction of cumene hydroperoxide alone and mixed with products under isothermal and non-isothermal conditions</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>140</volume><issue>5</issue><spage>2325</spage><epage>2336</epage><pages>2325-2336</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>Severe fire and explosions are frequent phenomena during handling of organic peroxides that are promoted supremely by conditions such as chemical impurities and thermal instability. As an initiator in the polymerization process, cumene hydroperoxide (CHP) has wide usage in the chemical process industry. This violently reactive chemical is studied here experimentally using differential scanning calorimeter (DSC), an isothermal mode of operation that can access the thermal hazards in the decomposition of CHP alone and later mixed with products following an autocatalytic reaction scheme. Importantly, DSC-evaluated thermokinetic parameters such as reaction enthalpy (Δ H d ), time to maximum rate (TMR iso ), and maximum heat flow ( Q max ) were estimated to ascertain the degree of thermal hazard under various transportation and storage temperatures. The Heat-Wait-Search mode of accelerating rate calorimeter has been used to investigate decomposition kinetics parameters data under an adiabatic condition. Data such as initial exothermic temperature ( T 0 ), self-heating rate (d T/ d t ), pressure rise rate (d P/ d t ) and pressure–temperature profiles help to gauge the runaway reaction hazard of CHP alone and then mixed with its products to support the autocatalytic model of exothermic decomposition. The curve fitting data indicated that activation energy had reduced from 245.4 to 236.7 and 242.3 kJ mol −1 , when CHP was mixed with acetone or dicumyl peroxide, respectively. The decrease in activation energy for autocatalytic material thermal decomposition reaction is depicted here with various experimental findings and mathematical analysis.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-019-09017-7</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2020-06, Vol.140 (5), p.2325-2336
issn 1388-6150
1588-2926
language eng
recordid cdi_proquest_journals_2393600784
source SpringerLink Journals
subjects Acetone
Activation energy
Adiabatic conditions
Analytical Chemistry
Chemical process industries
Chemistry
Chemistry and Materials Science
Cogeneration
Cogeneration power plants
Cumene
Cumene hydroperoxide
Curve fitting
Decomposition
Decomposition (Chemistry)
Decomposition reactions
Dicumyl peroxide
Enthalpy
Exothermic reactions
Explosions
Heat transmission
Heating rate
Inorganic Chemistry
Measurement Science and Instrumentation
Numerical analysis
Operational hazards
Organic peroxides
Parameters
Peroxides
Physical Chemistry
Polymer Sciences
Polymerization
Reaction kinetics
Temperature profiles
Thermal decomposition
Thermal instability
title Thermal hazardous evaluation of autocatalytic reaction of cumene hydroperoxide alone and mixed with products under isothermal and non-isothermal conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A27%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20hazardous%20evaluation%20of%20autocatalytic%20reaction%20of%20cumene%20hydroperoxide%20alone%20and%20mixed%20with%20products%20under%20isothermal%20and%20non-isothermal%20conditions&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Liu,%20Shang-Hao&rft.date=2020-06-01&rft.volume=140&rft.issue=5&rft.spage=2325&rft.epage=2336&rft.pages=2325-2336&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-019-09017-7&rft_dat=%3Cgale_proqu%3EA621718383%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2393600784&rft_id=info:pmid/&rft_galeid=A621718383&rfr_iscdi=true