Thermal hazardous evaluation of autocatalytic reaction of cumene hydroperoxide alone and mixed with products under isothermal and non-isothermal conditions
Severe fire and explosions are frequent phenomena during handling of organic peroxides that are promoted supremely by conditions such as chemical impurities and thermal instability. As an initiator in the polymerization process, cumene hydroperoxide (CHP) has wide usage in the chemical process indus...
Gespeichert in:
Veröffentlicht in: | Journal of thermal analysis and calorimetry 2020-06, Vol.140 (5), p.2325-2336 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2336 |
---|---|
container_issue | 5 |
container_start_page | 2325 |
container_title | Journal of thermal analysis and calorimetry |
container_volume | 140 |
creator | Liu, Shang-Hao Yu, Chang-Fei Das, Mitali |
description | Severe fire and explosions are frequent phenomena during handling of organic peroxides that are promoted supremely by conditions such as chemical impurities and thermal instability. As an initiator in the polymerization process, cumene hydroperoxide (CHP) has wide usage in the chemical process industry. This violently reactive chemical is studied here experimentally using differential scanning calorimeter (DSC), an isothermal mode of operation that can access the thermal hazards in the decomposition of CHP alone and later mixed with products following an autocatalytic reaction scheme. Importantly, DSC-evaluated thermokinetic parameters such as reaction enthalpy (Δ
H
d
), time to maximum rate (TMR
iso
), and maximum heat flow (
Q
max
) were estimated to ascertain the degree of thermal hazard under various transportation and storage temperatures. The Heat-Wait-Search mode of accelerating rate calorimeter has been used to investigate decomposition kinetics parameters data under an adiabatic condition. Data such as initial exothermic temperature (
T
0
), self-heating rate (d
T/
d
t
), pressure rise rate (d
P/
d
t
) and pressure–temperature profiles help to gauge the runaway reaction hazard of CHP alone and then mixed with its products to support the autocatalytic model of exothermic decomposition. The curve fitting data indicated that activation energy had reduced from 245.4 to 236.7 and 242.3 kJ mol
−1
, when CHP was mixed with acetone or dicumyl peroxide, respectively. The decrease in activation energy for autocatalytic material thermal decomposition reaction is depicted here with various experimental findings and mathematical analysis. |
doi_str_mv | 10.1007/s10973-019-09017-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2393600784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A621718383</galeid><sourcerecordid>A621718383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-ae14810be37c6192d4dbe79fa4f2f66acbcbc2c071400f8c62fe7f9cf4b05cc33</originalsourceid><addsrcrecordid>eNp9kU1vFDEMhkcIJErpH-AUiROHKfmYnUyOVcVHpUpItD1H3sTZTTWTLEkGdvkr_FmyTBH0UvkQy3le2_LbNG8YPWeUyveZUSVFS5lqqaJMtvJZc8JWw9ByxfvnNRc179mKvmxe5XxPKVWVO2l-3W4xTTCSLfyEZOOcCX6HcYbiYyDREZhLNFBgPBRvSEIwf3_MPGFAsj3YFHeY4t5bJDDGWoNgyeT3aMkPX7Zkl6KdTclkDhYT8TmWh6lHMMTQ_lcyMVh_nJFfNy8cjBnPHt7T5u7jh9vLz-31l09XlxfXrem4Ki0g6wZG1yik6ZnitrNrlMpB57jrezDrGtxQyTpK3WB67lA6ZVy3pitjhDht3i59657fZsxF38c5hTpSc6FEXw88dJU6X6gNjKh9cLEkMDUsTr4ujc7X-kXPmWSDGI5t3z0SVKbgvmxgzllf3Xx9zPKFNSnmnNDpXfITpINmVB8d1ovDujqs_zisZRWJRZQrHDaY_u39hOo33uutiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393600784</pqid></control><display><type>article</type><title>Thermal hazardous evaluation of autocatalytic reaction of cumene hydroperoxide alone and mixed with products under isothermal and non-isothermal conditions</title><source>SpringerLink Journals</source><creator>Liu, Shang-Hao ; Yu, Chang-Fei ; Das, Mitali</creator><creatorcontrib>Liu, Shang-Hao ; Yu, Chang-Fei ; Das, Mitali</creatorcontrib><description>Severe fire and explosions are frequent phenomena during handling of organic peroxides that are promoted supremely by conditions such as chemical impurities and thermal instability. As an initiator in the polymerization process, cumene hydroperoxide (CHP) has wide usage in the chemical process industry. This violently reactive chemical is studied here experimentally using differential scanning calorimeter (DSC), an isothermal mode of operation that can access the thermal hazards in the decomposition of CHP alone and later mixed with products following an autocatalytic reaction scheme. Importantly, DSC-evaluated thermokinetic parameters such as reaction enthalpy (Δ
H
d
), time to maximum rate (TMR
iso
), and maximum heat flow (
Q
max
) were estimated to ascertain the degree of thermal hazard under various transportation and storage temperatures. The Heat-Wait-Search mode of accelerating rate calorimeter has been used to investigate decomposition kinetics parameters data under an adiabatic condition. Data such as initial exothermic temperature (
T
0
), self-heating rate (d
T/
d
t
), pressure rise rate (d
P/
d
t
) and pressure–temperature profiles help to gauge the runaway reaction hazard of CHP alone and then mixed with its products to support the autocatalytic model of exothermic decomposition. The curve fitting data indicated that activation energy had reduced from 245.4 to 236.7 and 242.3 kJ mol
−1
, when CHP was mixed with acetone or dicumyl peroxide, respectively. The decrease in activation energy for autocatalytic material thermal decomposition reaction is depicted here with various experimental findings and mathematical analysis.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-019-09017-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Acetone ; Activation energy ; Adiabatic conditions ; Analytical Chemistry ; Chemical process industries ; Chemistry ; Chemistry and Materials Science ; Cogeneration ; Cogeneration power plants ; Cumene ; Cumene hydroperoxide ; Curve fitting ; Decomposition ; Decomposition (Chemistry) ; Decomposition reactions ; Dicumyl peroxide ; Enthalpy ; Exothermic reactions ; Explosions ; Heat transmission ; Heating rate ; Inorganic Chemistry ; Measurement Science and Instrumentation ; Numerical analysis ; Operational hazards ; Organic peroxides ; Parameters ; Peroxides ; Physical Chemistry ; Polymer Sciences ; Polymerization ; Reaction kinetics ; Temperature profiles ; Thermal decomposition ; Thermal instability</subject><ispartof>Journal of thermal analysis and calorimetry, 2020-06, Vol.140 (5), p.2325-2336</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Akadémiai Kiadó, Budapest, Hungary 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-ae14810be37c6192d4dbe79fa4f2f66acbcbc2c071400f8c62fe7f9cf4b05cc33</citedby><cites>FETCH-LOGICAL-c429t-ae14810be37c6192d4dbe79fa4f2f66acbcbc2c071400f8c62fe7f9cf4b05cc33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-019-09017-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-019-09017-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Liu, Shang-Hao</creatorcontrib><creatorcontrib>Yu, Chang-Fei</creatorcontrib><creatorcontrib>Das, Mitali</creatorcontrib><title>Thermal hazardous evaluation of autocatalytic reaction of cumene hydroperoxide alone and mixed with products under isothermal and non-isothermal conditions</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>Severe fire and explosions are frequent phenomena during handling of organic peroxides that are promoted supremely by conditions such as chemical impurities and thermal instability. As an initiator in the polymerization process, cumene hydroperoxide (CHP) has wide usage in the chemical process industry. This violently reactive chemical is studied here experimentally using differential scanning calorimeter (DSC), an isothermal mode of operation that can access the thermal hazards in the decomposition of CHP alone and later mixed with products following an autocatalytic reaction scheme. Importantly, DSC-evaluated thermokinetic parameters such as reaction enthalpy (Δ
H
d
), time to maximum rate (TMR
iso
), and maximum heat flow (
Q
max
) were estimated to ascertain the degree of thermal hazard under various transportation and storage temperatures. The Heat-Wait-Search mode of accelerating rate calorimeter has been used to investigate decomposition kinetics parameters data under an adiabatic condition. Data such as initial exothermic temperature (
T
0
), self-heating rate (d
T/
d
t
), pressure rise rate (d
P/
d
t
) and pressure–temperature profiles help to gauge the runaway reaction hazard of CHP alone and then mixed with its products to support the autocatalytic model of exothermic decomposition. The curve fitting data indicated that activation energy had reduced from 245.4 to 236.7 and 242.3 kJ mol
−1
, when CHP was mixed with acetone or dicumyl peroxide, respectively. The decrease in activation energy for autocatalytic material thermal decomposition reaction is depicted here with various experimental findings and mathematical analysis.</description><subject>Acetone</subject><subject>Activation energy</subject><subject>Adiabatic conditions</subject><subject>Analytical Chemistry</subject><subject>Chemical process industries</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Cogeneration</subject><subject>Cogeneration power plants</subject><subject>Cumene</subject><subject>Cumene hydroperoxide</subject><subject>Curve fitting</subject><subject>Decomposition</subject><subject>Decomposition (Chemistry)</subject><subject>Decomposition reactions</subject><subject>Dicumyl peroxide</subject><subject>Enthalpy</subject><subject>Exothermic reactions</subject><subject>Explosions</subject><subject>Heat transmission</subject><subject>Heating rate</subject><subject>Inorganic Chemistry</subject><subject>Measurement Science and Instrumentation</subject><subject>Numerical analysis</subject><subject>Operational hazards</subject><subject>Organic peroxides</subject><subject>Parameters</subject><subject>Peroxides</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Polymerization</subject><subject>Reaction kinetics</subject><subject>Temperature profiles</subject><subject>Thermal decomposition</subject><subject>Thermal instability</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU1vFDEMhkcIJErpH-AUiROHKfmYnUyOVcVHpUpItD1H3sTZTTWTLEkGdvkr_FmyTBH0UvkQy3le2_LbNG8YPWeUyveZUSVFS5lqqaJMtvJZc8JWw9ByxfvnNRc179mKvmxe5XxPKVWVO2l-3W4xTTCSLfyEZOOcCX6HcYbiYyDREZhLNFBgPBRvSEIwf3_MPGFAsj3YFHeY4t5bJDDGWoNgyeT3aMkPX7Zkl6KdTclkDhYT8TmWh6lHMMTQ_lcyMVh_nJFfNy8cjBnPHt7T5u7jh9vLz-31l09XlxfXrem4Ki0g6wZG1yik6ZnitrNrlMpB57jrezDrGtxQyTpK3WB67lA6ZVy3pitjhDht3i59657fZsxF38c5hTpSc6FEXw88dJU6X6gNjKh9cLEkMDUsTr4ujc7X-kXPmWSDGI5t3z0SVKbgvmxgzllf3Xx9zPKFNSnmnNDpXfITpINmVB8d1ovDujqs_zisZRWJRZQrHDaY_u39hOo33uutiQ</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Liu, Shang-Hao</creator><creator>Yu, Chang-Fei</creator><creator>Das, Mitali</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20200601</creationdate><title>Thermal hazardous evaluation of autocatalytic reaction of cumene hydroperoxide alone and mixed with products under isothermal and non-isothermal conditions</title><author>Liu, Shang-Hao ; Yu, Chang-Fei ; Das, Mitali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-ae14810be37c6192d4dbe79fa4f2f66acbcbc2c071400f8c62fe7f9cf4b05cc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetone</topic><topic>Activation energy</topic><topic>Adiabatic conditions</topic><topic>Analytical Chemistry</topic><topic>Chemical process industries</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Cogeneration</topic><topic>Cogeneration power plants</topic><topic>Cumene</topic><topic>Cumene hydroperoxide</topic><topic>Curve fitting</topic><topic>Decomposition</topic><topic>Decomposition (Chemistry)</topic><topic>Decomposition reactions</topic><topic>Dicumyl peroxide</topic><topic>Enthalpy</topic><topic>Exothermic reactions</topic><topic>Explosions</topic><topic>Heat transmission</topic><topic>Heating rate</topic><topic>Inorganic Chemistry</topic><topic>Measurement Science and Instrumentation</topic><topic>Numerical analysis</topic><topic>Operational hazards</topic><topic>Organic peroxides</topic><topic>Parameters</topic><topic>Peroxides</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Polymerization</topic><topic>Reaction kinetics</topic><topic>Temperature profiles</topic><topic>Thermal decomposition</topic><topic>Thermal instability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shang-Hao</creatorcontrib><creatorcontrib>Yu, Chang-Fei</creatorcontrib><creatorcontrib>Das, Mitali</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Shang-Hao</au><au>Yu, Chang-Fei</au><au>Das, Mitali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal hazardous evaluation of autocatalytic reaction of cumene hydroperoxide alone and mixed with products under isothermal and non-isothermal conditions</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>140</volume><issue>5</issue><spage>2325</spage><epage>2336</epage><pages>2325-2336</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>Severe fire and explosions are frequent phenomena during handling of organic peroxides that are promoted supremely by conditions such as chemical impurities and thermal instability. As an initiator in the polymerization process, cumene hydroperoxide (CHP) has wide usage in the chemical process industry. This violently reactive chemical is studied here experimentally using differential scanning calorimeter (DSC), an isothermal mode of operation that can access the thermal hazards in the decomposition of CHP alone and later mixed with products following an autocatalytic reaction scheme. Importantly, DSC-evaluated thermokinetic parameters such as reaction enthalpy (Δ
H
d
), time to maximum rate (TMR
iso
), and maximum heat flow (
Q
max
) were estimated to ascertain the degree of thermal hazard under various transportation and storage temperatures. The Heat-Wait-Search mode of accelerating rate calorimeter has been used to investigate decomposition kinetics parameters data under an adiabatic condition. Data such as initial exothermic temperature (
T
0
), self-heating rate (d
T/
d
t
), pressure rise rate (d
P/
d
t
) and pressure–temperature profiles help to gauge the runaway reaction hazard of CHP alone and then mixed with its products to support the autocatalytic model of exothermic decomposition. The curve fitting data indicated that activation energy had reduced from 245.4 to 236.7 and 242.3 kJ mol
−1
, when CHP was mixed with acetone or dicumyl peroxide, respectively. The decrease in activation energy for autocatalytic material thermal decomposition reaction is depicted here with various experimental findings and mathematical analysis.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-019-09017-7</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-6150 |
ispartof | Journal of thermal analysis and calorimetry, 2020-06, Vol.140 (5), p.2325-2336 |
issn | 1388-6150 1588-2926 |
language | eng |
recordid | cdi_proquest_journals_2393600784 |
source | SpringerLink Journals |
subjects | Acetone Activation energy Adiabatic conditions Analytical Chemistry Chemical process industries Chemistry Chemistry and Materials Science Cogeneration Cogeneration power plants Cumene Cumene hydroperoxide Curve fitting Decomposition Decomposition (Chemistry) Decomposition reactions Dicumyl peroxide Enthalpy Exothermic reactions Explosions Heat transmission Heating rate Inorganic Chemistry Measurement Science and Instrumentation Numerical analysis Operational hazards Organic peroxides Parameters Peroxides Physical Chemistry Polymer Sciences Polymerization Reaction kinetics Temperature profiles Thermal decomposition Thermal instability |
title | Thermal hazardous evaluation of autocatalytic reaction of cumene hydroperoxide alone and mixed with products under isothermal and non-isothermal conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A27%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20hazardous%20evaluation%20of%20autocatalytic%20reaction%20of%20cumene%20hydroperoxide%20alone%20and%20mixed%20with%20products%20under%20isothermal%20and%20non-isothermal%20conditions&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Liu,%20Shang-Hao&rft.date=2020-06-01&rft.volume=140&rft.issue=5&rft.spage=2325&rft.epage=2336&rft.pages=2325-2336&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-019-09017-7&rft_dat=%3Cgale_proqu%3EA621718383%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2393600784&rft_id=info:pmid/&rft_galeid=A621718383&rfr_iscdi=true |