Exothermically reactive titanium-silica nanoparticles
This paper focuses on developing Ti-SiOx nanoparticles and evaluating their self-propagating exothermic function. In combination with an atomized heating method, molten salt reduction, and sputtering, we established a fabrication technique for Ti-SiOx nanoparticles in which their exothermic characte...
Gespeichert in:
Veröffentlicht in: | Japanese Journal of Applied Physics 2020-06, Vol.59 (SI), p.SIIL06 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | SI |
container_start_page | SIIL06 |
container_title | Japanese Journal of Applied Physics |
container_volume | 59 |
creator | Shindo, Michiko Kiyohara, Keita Inoue, Keita Kodama, Kenta Namazu, Takahiro |
description | This paper focuses on developing Ti-SiOx nanoparticles and evaluating their self-propagating exothermic function. In combination with an atomized heating method, molten salt reduction, and sputtering, we established a fabrication technique for Ti-SiOx nanoparticles in which their exothermic characteristics can be designed. In the atomized heating method, porous SiOx nanoparticles with various spherical shapes, sizes, and porosities were fabricated. Porous SiOx nanoparticles with uniformly arranged pores were produced at a polystyrene latex (PSL) concentration of approximately 3.0 wt%. Reduction of the oxygen content of the porous SiOx nanoparticles was conducted using molten salt. Ti was deposited onto the entire surface by stirring and sputtering. The completed 1.0 mg of Ti-SiOx nanoparticle powder exhibited a self-propagating exothermic reaction by applying an electric spark. The relationship between PSL concentration and heat generation characteristics, such as the maximum temperature, time to reach maximum temperature, and duration of the exothermic reaction, was investigated. |
doi_str_mv | 10.35848/1347-4065/ab8283 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2393591702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2393591702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-baf68203db2a8631326882982ae6aae05aaf9035d04f597d629c95221c4f55943</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvBk4fY_G9ylFJ1oeBBPYdpNotZtrtrshX77U1d0YvCwDAz772BH0KXlNxwqYWeUy4WWBAl57DRTPMjNPlZHaMJIYxiYRg7RWcp1XlUUtAJkquPbnj1cRscNM1-Fj24Ibz72RAGaMNui1No8m3WQtv1EIfgGp_O0UkFTfIX332KXu5Wz8sHvH68L5a3a-wEpQPeQKU0I7zcMNCKU86U1sxoBl4BeCIBKkO4LImopFmUihlnJGPU5VkawafoasztY_e282mwdbeLbX5pGTdcGrogLKvoqHKxSyn6yvYxbCHuLSX2i449oLAHFHakkz3Xoyd0_W9oXUNvpbFPRa5iTZTtyypr8R_a_7M_Ad9Scwk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393591702</pqid></control><display><type>article</type><title>Exothermically reactive titanium-silica nanoparticles</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Shindo, Michiko ; Kiyohara, Keita ; Inoue, Keita ; Kodama, Kenta ; Namazu, Takahiro</creator><creatorcontrib>Shindo, Michiko ; Kiyohara, Keita ; Inoue, Keita ; Kodama, Kenta ; Namazu, Takahiro</creatorcontrib><description>This paper focuses on developing Ti-SiOx nanoparticles and evaluating their self-propagating exothermic function. In combination with an atomized heating method, molten salt reduction, and sputtering, we established a fabrication technique for Ti-SiOx nanoparticles in which their exothermic characteristics can be designed. In the atomized heating method, porous SiOx nanoparticles with various spherical shapes, sizes, and porosities were fabricated. Porous SiOx nanoparticles with uniformly arranged pores were produced at a polystyrene latex (PSL) concentration of approximately 3.0 wt%. Reduction of the oxygen content of the porous SiOx nanoparticles was conducted using molten salt. Ti was deposited onto the entire surface by stirring and sputtering. The completed 1.0 mg of Ti-SiOx nanoparticle powder exhibited a self-propagating exothermic reaction by applying an electric spark. The relationship between PSL concentration and heat generation characteristics, such as the maximum temperature, time to reach maximum temperature, and duration of the exothermic reaction, was investigated.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.35848/1347-4065/ab8283</identifier><identifier>CODEN: JJAPB6</identifier><language>eng</language><publisher>Tokyo: IOP Publishing</publisher><subject>Atomizing ; Electric sparks ; Exothermic reactions ; Heat generation ; Heating ; Latex ; Molten salts ; Nanoparticles ; Oxygen content ; Polystyrene resins ; porous silica nanoparticles ; Reduction ; Self propagation ; self-propagating exothermic reaction ; Silicon dioxide ; Sputtering ; Ti sputtering ; Titanium ; titanium/silica nanoparticles ; zero emission</subject><ispartof>Japanese Journal of Applied Physics, 2020-06, Vol.59 (SI), p.SIIL06</ispartof><rights>2020 The Japan Society of Applied Physics</rights><rights>Copyright Japanese Journal of Applied Physics Jun 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-baf68203db2a8631326882982ae6aae05aaf9035d04f597d629c95221c4f55943</citedby><cites>FETCH-LOGICAL-c411t-baf68203db2a8631326882982ae6aae05aaf9035d04f597d629c95221c4f55943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.35848/1347-4065/ab8283/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Shindo, Michiko</creatorcontrib><creatorcontrib>Kiyohara, Keita</creatorcontrib><creatorcontrib>Inoue, Keita</creatorcontrib><creatorcontrib>Kodama, Kenta</creatorcontrib><creatorcontrib>Namazu, Takahiro</creatorcontrib><title>Exothermically reactive titanium-silica nanoparticles</title><title>Japanese Journal of Applied Physics</title><addtitle>Jpn. J. Appl. Phys</addtitle><description>This paper focuses on developing Ti-SiOx nanoparticles and evaluating their self-propagating exothermic function. In combination with an atomized heating method, molten salt reduction, and sputtering, we established a fabrication technique for Ti-SiOx nanoparticles in which their exothermic characteristics can be designed. In the atomized heating method, porous SiOx nanoparticles with various spherical shapes, sizes, and porosities were fabricated. Porous SiOx nanoparticles with uniformly arranged pores were produced at a polystyrene latex (PSL) concentration of approximately 3.0 wt%. Reduction of the oxygen content of the porous SiOx nanoparticles was conducted using molten salt. Ti was deposited onto the entire surface by stirring and sputtering. The completed 1.0 mg of Ti-SiOx nanoparticle powder exhibited a self-propagating exothermic reaction by applying an electric spark. The relationship between PSL concentration and heat generation characteristics, such as the maximum temperature, time to reach maximum temperature, and duration of the exothermic reaction, was investigated.</description><subject>Atomizing</subject><subject>Electric sparks</subject><subject>Exothermic reactions</subject><subject>Heat generation</subject><subject>Heating</subject><subject>Latex</subject><subject>Molten salts</subject><subject>Nanoparticles</subject><subject>Oxygen content</subject><subject>Polystyrene resins</subject><subject>porous silica nanoparticles</subject><subject>Reduction</subject><subject>Self propagation</subject><subject>self-propagating exothermic reaction</subject><subject>Silicon dioxide</subject><subject>Sputtering</subject><subject>Ti sputtering</subject><subject>Titanium</subject><subject>titanium/silica nanoparticles</subject><subject>zero emission</subject><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvBk4fY_G9ylFJ1oeBBPYdpNotZtrtrshX77U1d0YvCwDAz772BH0KXlNxwqYWeUy4WWBAl57DRTPMjNPlZHaMJIYxiYRg7RWcp1XlUUtAJkquPbnj1cRscNM1-Fj24Ibz72RAGaMNui1No8m3WQtv1EIfgGp_O0UkFTfIX332KXu5Wz8sHvH68L5a3a-wEpQPeQKU0I7zcMNCKU86U1sxoBl4BeCIBKkO4LImopFmUihlnJGPU5VkawafoasztY_e282mwdbeLbX5pGTdcGrogLKvoqHKxSyn6yvYxbCHuLSX2i449oLAHFHakkz3Xoyd0_W9oXUNvpbFPRa5iTZTtyypr8R_a_7M_Ad9Scwk</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Shindo, Michiko</creator><creator>Kiyohara, Keita</creator><creator>Inoue, Keita</creator><creator>Kodama, Kenta</creator><creator>Namazu, Takahiro</creator><general>IOP Publishing</general><general>Japanese Journal of Applied Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20200601</creationdate><title>Exothermically reactive titanium-silica nanoparticles</title><author>Shindo, Michiko ; Kiyohara, Keita ; Inoue, Keita ; Kodama, Kenta ; Namazu, Takahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-baf68203db2a8631326882982ae6aae05aaf9035d04f597d629c95221c4f55943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atomizing</topic><topic>Electric sparks</topic><topic>Exothermic reactions</topic><topic>Heat generation</topic><topic>Heating</topic><topic>Latex</topic><topic>Molten salts</topic><topic>Nanoparticles</topic><topic>Oxygen content</topic><topic>Polystyrene resins</topic><topic>porous silica nanoparticles</topic><topic>Reduction</topic><topic>Self propagation</topic><topic>self-propagating exothermic reaction</topic><topic>Silicon dioxide</topic><topic>Sputtering</topic><topic>Ti sputtering</topic><topic>Titanium</topic><topic>titanium/silica nanoparticles</topic><topic>zero emission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shindo, Michiko</creatorcontrib><creatorcontrib>Kiyohara, Keita</creatorcontrib><creatorcontrib>Inoue, Keita</creatorcontrib><creatorcontrib>Kodama, Kenta</creatorcontrib><creatorcontrib>Namazu, Takahiro</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shindo, Michiko</au><au>Kiyohara, Keita</au><au>Inoue, Keita</au><au>Kodama, Kenta</au><au>Namazu, Takahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exothermically reactive titanium-silica nanoparticles</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><addtitle>Jpn. J. Appl. Phys</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>59</volume><issue>SI</issue><spage>SIIL06</spage><pages>SIIL06-</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><coden>JJAPB6</coden><abstract>This paper focuses on developing Ti-SiOx nanoparticles and evaluating their self-propagating exothermic function. In combination with an atomized heating method, molten salt reduction, and sputtering, we established a fabrication technique for Ti-SiOx nanoparticles in which their exothermic characteristics can be designed. In the atomized heating method, porous SiOx nanoparticles with various spherical shapes, sizes, and porosities were fabricated. Porous SiOx nanoparticles with uniformly arranged pores were produced at a polystyrene latex (PSL) concentration of approximately 3.0 wt%. Reduction of the oxygen content of the porous SiOx nanoparticles was conducted using molten salt. Ti was deposited onto the entire surface by stirring and sputtering. The completed 1.0 mg of Ti-SiOx nanoparticle powder exhibited a self-propagating exothermic reaction by applying an electric spark. The relationship between PSL concentration and heat generation characteristics, such as the maximum temperature, time to reach maximum temperature, and duration of the exothermic reaction, was investigated.</abstract><cop>Tokyo</cop><pub>IOP Publishing</pub><doi>10.35848/1347-4065/ab8283</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-4922 |
ispartof | Japanese Journal of Applied Physics, 2020-06, Vol.59 (SI), p.SIIL06 |
issn | 0021-4922 1347-4065 |
language | eng |
recordid | cdi_proquest_journals_2393591702 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Atomizing Electric sparks Exothermic reactions Heat generation Heating Latex Molten salts Nanoparticles Oxygen content Polystyrene resins porous silica nanoparticles Reduction Self propagation self-propagating exothermic reaction Silicon dioxide Sputtering Ti sputtering Titanium titanium/silica nanoparticles zero emission |
title | Exothermically reactive titanium-silica nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A21%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exothermically%20reactive%20titanium-silica%20nanoparticles&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Shindo,%20Michiko&rft.date=2020-06-01&rft.volume=59&rft.issue=SI&rft.spage=SIIL06&rft.pages=SIIL06-&rft.issn=0021-4922&rft.eissn=1347-4065&rft.coden=JJAPB6&rft_id=info:doi/10.35848/1347-4065/ab8283&rft_dat=%3Cproquest_iop_j%3E2393591702%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2393591702&rft_id=info:pmid/&rfr_iscdi=true |