Exothermically reactive titanium-silica nanoparticles

This paper focuses on developing Ti-SiOx nanoparticles and evaluating their self-propagating exothermic function. In combination with an atomized heating method, molten salt reduction, and sputtering, we established a fabrication technique for Ti-SiOx nanoparticles in which their exothermic characte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese Journal of Applied Physics 2020-06, Vol.59 (SI), p.SIIL06
Hauptverfasser: Shindo, Michiko, Kiyohara, Keita, Inoue, Keita, Kodama, Kenta, Namazu, Takahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue SI
container_start_page SIIL06
container_title Japanese Journal of Applied Physics
container_volume 59
creator Shindo, Michiko
Kiyohara, Keita
Inoue, Keita
Kodama, Kenta
Namazu, Takahiro
description This paper focuses on developing Ti-SiOx nanoparticles and evaluating their self-propagating exothermic function. In combination with an atomized heating method, molten salt reduction, and sputtering, we established a fabrication technique for Ti-SiOx nanoparticles in which their exothermic characteristics can be designed. In the atomized heating method, porous SiOx nanoparticles with various spherical shapes, sizes, and porosities were fabricated. Porous SiOx nanoparticles with uniformly arranged pores were produced at a polystyrene latex (PSL) concentration of approximately 3.0 wt%. Reduction of the oxygen content of the porous SiOx nanoparticles was conducted using molten salt. Ti was deposited onto the entire surface by stirring and sputtering. The completed 1.0 mg of Ti-SiOx nanoparticle powder exhibited a self-propagating exothermic reaction by applying an electric spark. The relationship between PSL concentration and heat generation characteristics, such as the maximum temperature, time to reach maximum temperature, and duration of the exothermic reaction, was investigated.
doi_str_mv 10.35848/1347-4065/ab8283
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2393591702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2393591702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-baf68203db2a8631326882982ae6aae05aaf9035d04f597d629c95221c4f55943</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvBk4fY_G9ylFJ1oeBBPYdpNotZtrtrshX77U1d0YvCwDAz772BH0KXlNxwqYWeUy4WWBAl57DRTPMjNPlZHaMJIYxiYRg7RWcp1XlUUtAJkquPbnj1cRscNM1-Fj24Ibz72RAGaMNui1No8m3WQtv1EIfgGp_O0UkFTfIX332KXu5Wz8sHvH68L5a3a-wEpQPeQKU0I7zcMNCKU86U1sxoBl4BeCIBKkO4LImopFmUihlnJGPU5VkawafoasztY_e282mwdbeLbX5pGTdcGrogLKvoqHKxSyn6yvYxbCHuLSX2i449oLAHFHakkz3Xoyd0_W9oXUNvpbFPRa5iTZTtyypr8R_a_7M_Ad9Scwk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393591702</pqid></control><display><type>article</type><title>Exothermically reactive titanium-silica nanoparticles</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Shindo, Michiko ; Kiyohara, Keita ; Inoue, Keita ; Kodama, Kenta ; Namazu, Takahiro</creator><creatorcontrib>Shindo, Michiko ; Kiyohara, Keita ; Inoue, Keita ; Kodama, Kenta ; Namazu, Takahiro</creatorcontrib><description>This paper focuses on developing Ti-SiOx nanoparticles and evaluating their self-propagating exothermic function. In combination with an atomized heating method, molten salt reduction, and sputtering, we established a fabrication technique for Ti-SiOx nanoparticles in which their exothermic characteristics can be designed. In the atomized heating method, porous SiOx nanoparticles with various spherical shapes, sizes, and porosities were fabricated. Porous SiOx nanoparticles with uniformly arranged pores were produced at a polystyrene latex (PSL) concentration of approximately 3.0 wt%. Reduction of the oxygen content of the porous SiOx nanoparticles was conducted using molten salt. Ti was deposited onto the entire surface by stirring and sputtering. The completed 1.0 mg of Ti-SiOx nanoparticle powder exhibited a self-propagating exothermic reaction by applying an electric spark. The relationship between PSL concentration and heat generation characteristics, such as the maximum temperature, time to reach maximum temperature, and duration of the exothermic reaction, was investigated.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.35848/1347-4065/ab8283</identifier><identifier>CODEN: JJAPB6</identifier><language>eng</language><publisher>Tokyo: IOP Publishing</publisher><subject>Atomizing ; Electric sparks ; Exothermic reactions ; Heat generation ; Heating ; Latex ; Molten salts ; Nanoparticles ; Oxygen content ; Polystyrene resins ; porous silica nanoparticles ; Reduction ; Self propagation ; self-propagating exothermic reaction ; Silicon dioxide ; Sputtering ; Ti sputtering ; Titanium ; titanium/silica nanoparticles ; zero emission</subject><ispartof>Japanese Journal of Applied Physics, 2020-06, Vol.59 (SI), p.SIIL06</ispartof><rights>2020 The Japan Society of Applied Physics</rights><rights>Copyright Japanese Journal of Applied Physics Jun 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-baf68203db2a8631326882982ae6aae05aaf9035d04f597d629c95221c4f55943</citedby><cites>FETCH-LOGICAL-c411t-baf68203db2a8631326882982ae6aae05aaf9035d04f597d629c95221c4f55943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.35848/1347-4065/ab8283/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Shindo, Michiko</creatorcontrib><creatorcontrib>Kiyohara, Keita</creatorcontrib><creatorcontrib>Inoue, Keita</creatorcontrib><creatorcontrib>Kodama, Kenta</creatorcontrib><creatorcontrib>Namazu, Takahiro</creatorcontrib><title>Exothermically reactive titanium-silica nanoparticles</title><title>Japanese Journal of Applied Physics</title><addtitle>Jpn. J. Appl. Phys</addtitle><description>This paper focuses on developing Ti-SiOx nanoparticles and evaluating their self-propagating exothermic function. In combination with an atomized heating method, molten salt reduction, and sputtering, we established a fabrication technique for Ti-SiOx nanoparticles in which their exothermic characteristics can be designed. In the atomized heating method, porous SiOx nanoparticles with various spherical shapes, sizes, and porosities were fabricated. Porous SiOx nanoparticles with uniformly arranged pores were produced at a polystyrene latex (PSL) concentration of approximately 3.0 wt%. Reduction of the oxygen content of the porous SiOx nanoparticles was conducted using molten salt. Ti was deposited onto the entire surface by stirring and sputtering. The completed 1.0 mg of Ti-SiOx nanoparticle powder exhibited a self-propagating exothermic reaction by applying an electric spark. The relationship between PSL concentration and heat generation characteristics, such as the maximum temperature, time to reach maximum temperature, and duration of the exothermic reaction, was investigated.</description><subject>Atomizing</subject><subject>Electric sparks</subject><subject>Exothermic reactions</subject><subject>Heat generation</subject><subject>Heating</subject><subject>Latex</subject><subject>Molten salts</subject><subject>Nanoparticles</subject><subject>Oxygen content</subject><subject>Polystyrene resins</subject><subject>porous silica nanoparticles</subject><subject>Reduction</subject><subject>Self propagation</subject><subject>self-propagating exothermic reaction</subject><subject>Silicon dioxide</subject><subject>Sputtering</subject><subject>Ti sputtering</subject><subject>Titanium</subject><subject>titanium/silica nanoparticles</subject><subject>zero emission</subject><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvBk4fY_G9ylFJ1oeBBPYdpNotZtrtrshX77U1d0YvCwDAz772BH0KXlNxwqYWeUy4WWBAl57DRTPMjNPlZHaMJIYxiYRg7RWcp1XlUUtAJkquPbnj1cRscNM1-Fj24Ibz72RAGaMNui1No8m3WQtv1EIfgGp_O0UkFTfIX332KXu5Wz8sHvH68L5a3a-wEpQPeQKU0I7zcMNCKU86U1sxoBl4BeCIBKkO4LImopFmUihlnJGPU5VkawafoasztY_e282mwdbeLbX5pGTdcGrogLKvoqHKxSyn6yvYxbCHuLSX2i449oLAHFHakkz3Xoyd0_W9oXUNvpbFPRa5iTZTtyypr8R_a_7M_Ad9Scwk</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Shindo, Michiko</creator><creator>Kiyohara, Keita</creator><creator>Inoue, Keita</creator><creator>Kodama, Kenta</creator><creator>Namazu, Takahiro</creator><general>IOP Publishing</general><general>Japanese Journal of Applied Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20200601</creationdate><title>Exothermically reactive titanium-silica nanoparticles</title><author>Shindo, Michiko ; Kiyohara, Keita ; Inoue, Keita ; Kodama, Kenta ; Namazu, Takahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-baf68203db2a8631326882982ae6aae05aaf9035d04f597d629c95221c4f55943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atomizing</topic><topic>Electric sparks</topic><topic>Exothermic reactions</topic><topic>Heat generation</topic><topic>Heating</topic><topic>Latex</topic><topic>Molten salts</topic><topic>Nanoparticles</topic><topic>Oxygen content</topic><topic>Polystyrene resins</topic><topic>porous silica nanoparticles</topic><topic>Reduction</topic><topic>Self propagation</topic><topic>self-propagating exothermic reaction</topic><topic>Silicon dioxide</topic><topic>Sputtering</topic><topic>Ti sputtering</topic><topic>Titanium</topic><topic>titanium/silica nanoparticles</topic><topic>zero emission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shindo, Michiko</creatorcontrib><creatorcontrib>Kiyohara, Keita</creatorcontrib><creatorcontrib>Inoue, Keita</creatorcontrib><creatorcontrib>Kodama, Kenta</creatorcontrib><creatorcontrib>Namazu, Takahiro</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shindo, Michiko</au><au>Kiyohara, Keita</au><au>Inoue, Keita</au><au>Kodama, Kenta</au><au>Namazu, Takahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exothermically reactive titanium-silica nanoparticles</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><addtitle>Jpn. J. Appl. Phys</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>59</volume><issue>SI</issue><spage>SIIL06</spage><pages>SIIL06-</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><coden>JJAPB6</coden><abstract>This paper focuses on developing Ti-SiOx nanoparticles and evaluating their self-propagating exothermic function. In combination with an atomized heating method, molten salt reduction, and sputtering, we established a fabrication technique for Ti-SiOx nanoparticles in which their exothermic characteristics can be designed. In the atomized heating method, porous SiOx nanoparticles with various spherical shapes, sizes, and porosities were fabricated. Porous SiOx nanoparticles with uniformly arranged pores were produced at a polystyrene latex (PSL) concentration of approximately 3.0 wt%. Reduction of the oxygen content of the porous SiOx nanoparticles was conducted using molten salt. Ti was deposited onto the entire surface by stirring and sputtering. The completed 1.0 mg of Ti-SiOx nanoparticle powder exhibited a self-propagating exothermic reaction by applying an electric spark. The relationship between PSL concentration and heat generation characteristics, such as the maximum temperature, time to reach maximum temperature, and duration of the exothermic reaction, was investigated.</abstract><cop>Tokyo</cop><pub>IOP Publishing</pub><doi>10.35848/1347-4065/ab8283</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-4922
ispartof Japanese Journal of Applied Physics, 2020-06, Vol.59 (SI), p.SIIL06
issn 0021-4922
1347-4065
language eng
recordid cdi_proquest_journals_2393591702
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Atomizing
Electric sparks
Exothermic reactions
Heat generation
Heating
Latex
Molten salts
Nanoparticles
Oxygen content
Polystyrene resins
porous silica nanoparticles
Reduction
Self propagation
self-propagating exothermic reaction
Silicon dioxide
Sputtering
Ti sputtering
Titanium
titanium/silica nanoparticles
zero emission
title Exothermically reactive titanium-silica nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A21%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exothermically%20reactive%20titanium-silica%20nanoparticles&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Shindo,%20Michiko&rft.date=2020-06-01&rft.volume=59&rft.issue=SI&rft.spage=SIIL06&rft.pages=SIIL06-&rft.issn=0021-4922&rft.eissn=1347-4065&rft.coden=JJAPB6&rft_id=info:doi/10.35848/1347-4065/ab8283&rft_dat=%3Cproquest_iop_j%3E2393591702%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2393591702&rft_id=info:pmid/&rfr_iscdi=true