Fast Multivariate Probit Estimation via a Two-Stage Composite Likelihood
The multivariate probit is popular for modeling correlated binary data, with an attractive balance of flexibility and simplicity. However, considerable challenges remain in computation and in devising a clear statistical framework. Interest in the multivariate probit has increased in recent years. C...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-04 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ting, Bryan W Wright, Fred A Yi-Hui, Zhou |
description | The multivariate probit is popular for modeling correlated binary data, with an attractive balance of flexibility and simplicity. However, considerable challenges remain in computation and in devising a clear statistical framework. Interest in the multivariate probit has increased in recent years. Current applications include genomics and precision medicine, where simultaneous modeling of multiple traits may be of interest, and computational efficiency is an important consideration. We propose a fast method for multivariate probit estimation via a two-stage composite likelihood. We explore computational and statistical efficiency, and note that the approach sets the stage for extensions beyond the purely binary setting. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2393254110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2393254110</sourcerecordid><originalsourceid>FETCH-proquest_journals_23932541103</originalsourceid><addsrcrecordid>eNqNys0KgkAUQOEhCJLyHQZaC-OM9rMWxUVBkPu40VTX1GszV3v9XPQArc7ifDMRaGPiaJdovRCh97VSSm-2Ok1NIMoCPMvj0DCO4BDYypOjK7LMPWMLjNTJEUGCrD4UnRkeVmbU9uRxsgd82QafRLeVmN-h8Tb8dSnWRV5lZdQ7eg_W86WmwXXTumizNzpN4liZ_9QXMOg7zg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393254110</pqid></control><display><type>article</type><title>Fast Multivariate Probit Estimation via a Two-Stage Composite Likelihood</title><source>Free E- Journals</source><creator>Ting, Bryan W ; Wright, Fred A ; Yi-Hui, Zhou</creator><creatorcontrib>Ting, Bryan W ; Wright, Fred A ; Yi-Hui, Zhou</creatorcontrib><description>The multivariate probit is popular for modeling correlated binary data, with an attractive balance of flexibility and simplicity. However, considerable challenges remain in computation and in devising a clear statistical framework. Interest in the multivariate probit has increased in recent years. Current applications include genomics and precision medicine, where simultaneous modeling of multiple traits may be of interest, and computational efficiency is an important consideration. We propose a fast method for multivariate probit estimation via a two-stage composite likelihood. We explore computational and statistical efficiency, and note that the approach sets the stage for extensions beyond the purely binary setting.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Binary data ; Computational efficiency ; Computing time ; Multivariate analysis</subject><ispartof>arXiv.org, 2020-04</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Ting, Bryan W</creatorcontrib><creatorcontrib>Wright, Fred A</creatorcontrib><creatorcontrib>Yi-Hui, Zhou</creatorcontrib><title>Fast Multivariate Probit Estimation via a Two-Stage Composite Likelihood</title><title>arXiv.org</title><description>The multivariate probit is popular for modeling correlated binary data, with an attractive balance of flexibility and simplicity. However, considerable challenges remain in computation and in devising a clear statistical framework. Interest in the multivariate probit has increased in recent years. Current applications include genomics and precision medicine, where simultaneous modeling of multiple traits may be of interest, and computational efficiency is an important consideration. We propose a fast method for multivariate probit estimation via a two-stage composite likelihood. We explore computational and statistical efficiency, and note that the approach sets the stage for extensions beyond the purely binary setting.</description><subject>Binary data</subject><subject>Computational efficiency</subject><subject>Computing time</subject><subject>Multivariate analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNys0KgkAUQOEhCJLyHQZaC-OM9rMWxUVBkPu40VTX1GszV3v9XPQArc7ifDMRaGPiaJdovRCh97VSSm-2Ok1NIMoCPMvj0DCO4BDYypOjK7LMPWMLjNTJEUGCrD4UnRkeVmbU9uRxsgd82QafRLeVmN-h8Tb8dSnWRV5lZdQ7eg_W86WmwXXTumizNzpN4liZ_9QXMOg7zg</recordid><startdate>20200420</startdate><enddate>20200420</enddate><creator>Ting, Bryan W</creator><creator>Wright, Fred A</creator><creator>Yi-Hui, Zhou</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200420</creationdate><title>Fast Multivariate Probit Estimation via a Two-Stage Composite Likelihood</title><author>Ting, Bryan W ; Wright, Fred A ; Yi-Hui, Zhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23932541103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Binary data</topic><topic>Computational efficiency</topic><topic>Computing time</topic><topic>Multivariate analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Ting, Bryan W</creatorcontrib><creatorcontrib>Wright, Fred A</creatorcontrib><creatorcontrib>Yi-Hui, Zhou</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ting, Bryan W</au><au>Wright, Fred A</au><au>Yi-Hui, Zhou</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Fast Multivariate Probit Estimation via a Two-Stage Composite Likelihood</atitle><jtitle>arXiv.org</jtitle><date>2020-04-20</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>The multivariate probit is popular for modeling correlated binary data, with an attractive balance of flexibility and simplicity. However, considerable challenges remain in computation and in devising a clear statistical framework. Interest in the multivariate probit has increased in recent years. Current applications include genomics and precision medicine, where simultaneous modeling of multiple traits may be of interest, and computational efficiency is an important consideration. We propose a fast method for multivariate probit estimation via a two-stage composite likelihood. We explore computational and statistical efficiency, and note that the approach sets the stage for extensions beyond the purely binary setting.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2393254110 |
source | Free E- Journals |
subjects | Binary data Computational efficiency Computing time Multivariate analysis |
title | Fast Multivariate Probit Estimation via a Two-Stage Composite Likelihood |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T00%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Fast%20Multivariate%20Probit%20Estimation%20via%20a%20Two-Stage%20Composite%20Likelihood&rft.jtitle=arXiv.org&rft.au=Ting,%20Bryan%20W&rft.date=2020-04-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2393254110%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2393254110&rft_id=info:pmid/&rfr_iscdi=true |