On the Computation of Apparent Direct Solar Radiation

Near-forward-scattered radiation coming from the vicinity of the sun’s direction impacts the interpretation of measurements of direct solar radiation by pyrheliometers and sun photometers, and it is also relevant for concentrating solar technology applications. Here, a Monte Carlo radiative transfer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the atmospheric sciences 2019-09, Vol.76 (9), p.2761-2780
Hauptverfasser: Räisänen, Petri, Lindfors, Anders V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2780
container_issue 9
container_start_page 2761
container_title Journal of the atmospheric sciences
container_volume 76
creator Räisänen, Petri
Lindfors, Anders V.
description Near-forward-scattered radiation coming from the vicinity of the sun’s direction impacts the interpretation of measurements of direct solar radiation by pyrheliometers and sun photometers, and it is also relevant for concentrating solar technology applications. Here, a Monte Carlo radiative transfer model is employed to study the apparent direct solar transmittance t(α), that is, the transmittance measured by an instrument that receives the radiation within a half-field-of-view (half-FOV) angle α from the center of the solar disk, for various ice cloud, water cloud, and aerosol cases. The contribution of scattered radiation to t(α) increases with increasing particle size, and it also depends strongly on ice crystal morphology. The Monte Carlo calculations are compared with a simple approach, in which t(α) is estimated through Beer’s law, using a scaled optical depth that excludes the part of the phase function corresponding to scattering angles smaller than α. Overall, this optical depth scaling approach works very well, although with some degradation of the performance for ice clouds for very small half-FOV angles (α < 0.5°–1°), and in optically thick cases. The errors can be reduced by fine-tuning the optical depth scaling factors based on the Monte Carlo results. Parameterizations are provided for computing the optical depth scaling factors for water clouds, ice clouds, aerosols, and for completeness, Rayleigh scattering to allow for a simple calculation of t(α). It is also shown that the optical depth scaling used in delta-two-stream approximations is inappropriate for simulating the direct solar radiation received by pyrheliometers.
doi_str_mv 10.1175/JAS-D-19-0030.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2393024821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2393024821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-a1ea0d387c80e666c16019c75e9d63dfcf2986885f04a9a77cdc3042bfe59a743</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWKtnrwHPsTPJbjY5Lls_KRSsnkPMJril3azZ9OC_d2udyzDDw_vCQ8gtwj1iVS5e6w1bMtQMQEyvMzLDkgODQupzMgPgnBWaq0tyNY5bmIZXOCPluqf5y9Mm7odDtrmLPY2B1sNgk-8zXXbJu0w3cWcTfbNt94dck4tgd6O_-d9z8vH48N48s9X66aWpV8wJhMwsegutUJVT4KWUDiWgdlXpdStFG1zgWkmlygCF1baqXOsEFPwz-HI6CzEnd6fcIcXvgx-z2cZD6qdKw4UWwAvFcaIWJ8qlOI7JBzOkbm_Tj0EwRzdmcmOWBrU5ujEofgHvxlVx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393024821</pqid></control><display><type>article</type><title>On the Computation of Apparent Direct Solar Radiation</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Räisänen, Petri ; Lindfors, Anders V.</creator><creatorcontrib>Räisänen, Petri ; Lindfors, Anders V.</creatorcontrib><description>Near-forward-scattered radiation coming from the vicinity of the sun’s direction impacts the interpretation of measurements of direct solar radiation by pyrheliometers and sun photometers, and it is also relevant for concentrating solar technology applications. Here, a Monte Carlo radiative transfer model is employed to study the apparent direct solar transmittance t(α), that is, the transmittance measured by an instrument that receives the radiation within a half-field-of-view (half-FOV) angle α from the center of the solar disk, for various ice cloud, water cloud, and aerosol cases. The contribution of scattered radiation to t(α) increases with increasing particle size, and it also depends strongly on ice crystal morphology. The Monte Carlo calculations are compared with a simple approach, in which t(α) is estimated through Beer’s law, using a scaled optical depth that excludes the part of the phase function corresponding to scattering angles smaller than α. Overall, this optical depth scaling approach works very well, although with some degradation of the performance for ice clouds for very small half-FOV angles (α &lt; 0.5°–1°), and in optically thick cases. The errors can be reduced by fine-tuning the optical depth scaling factors based on the Monte Carlo results. Parameterizations are provided for computing the optical depth scaling factors for water clouds, ice clouds, aerosols, and for completeness, Rayleigh scattering to allow for a simple calculation of t(α). It is also shown that the optical depth scaling used in delta-two-stream approximations is inappropriate for simulating the direct solar radiation received by pyrheliometers.</description><identifier>ISSN: 0022-4928</identifier><identifier>EISSN: 1520-0469</identifier><identifier>DOI: 10.1175/JAS-D-19-0030.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Aerosols ; Cloud water ; Clouds ; Computation ; Computer simulation ; Crystal morphology ; Depth ; Direct solar radiation ; Field of view ; Ice ; Ice clouds ; Ice crystals ; Meteorological satellites ; Monte Carlo simulation ; Optical analysis ; Optical thickness ; Photometers ; Pyrheliometers ; Radiative transfer ; Rayleigh scattering ; Scaling ; Scaling factors ; Scattering angle ; Solar radiation ; Statistical methods ; Sun ; Transmittance ; Water depth</subject><ispartof>Journal of the atmospheric sciences, 2019-09, Vol.76 (9), p.2761-2780</ispartof><rights>Copyright American Meteorological Society Sep 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-a1ea0d387c80e666c16019c75e9d63dfcf2986885f04a9a77cdc3042bfe59a743</citedby><cites>FETCH-LOGICAL-c310t-a1ea0d387c80e666c16019c75e9d63dfcf2986885f04a9a77cdc3042bfe59a743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3681,27924,27925</link.rule.ids></links><search><creatorcontrib>Räisänen, Petri</creatorcontrib><creatorcontrib>Lindfors, Anders V.</creatorcontrib><title>On the Computation of Apparent Direct Solar Radiation</title><title>Journal of the atmospheric sciences</title><description>Near-forward-scattered radiation coming from the vicinity of the sun’s direction impacts the interpretation of measurements of direct solar radiation by pyrheliometers and sun photometers, and it is also relevant for concentrating solar technology applications. Here, a Monte Carlo radiative transfer model is employed to study the apparent direct solar transmittance t(α), that is, the transmittance measured by an instrument that receives the radiation within a half-field-of-view (half-FOV) angle α from the center of the solar disk, for various ice cloud, water cloud, and aerosol cases. The contribution of scattered radiation to t(α) increases with increasing particle size, and it also depends strongly on ice crystal morphology. The Monte Carlo calculations are compared with a simple approach, in which t(α) is estimated through Beer’s law, using a scaled optical depth that excludes the part of the phase function corresponding to scattering angles smaller than α. Overall, this optical depth scaling approach works very well, although with some degradation of the performance for ice clouds for very small half-FOV angles (α &lt; 0.5°–1°), and in optically thick cases. The errors can be reduced by fine-tuning the optical depth scaling factors based on the Monte Carlo results. Parameterizations are provided for computing the optical depth scaling factors for water clouds, ice clouds, aerosols, and for completeness, Rayleigh scattering to allow for a simple calculation of t(α). It is also shown that the optical depth scaling used in delta-two-stream approximations is inappropriate for simulating the direct solar radiation received by pyrheliometers.</description><subject>Aerosols</subject><subject>Cloud water</subject><subject>Clouds</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Crystal morphology</subject><subject>Depth</subject><subject>Direct solar radiation</subject><subject>Field of view</subject><subject>Ice</subject><subject>Ice clouds</subject><subject>Ice crystals</subject><subject>Meteorological satellites</subject><subject>Monte Carlo simulation</subject><subject>Optical analysis</subject><subject>Optical thickness</subject><subject>Photometers</subject><subject>Pyrheliometers</subject><subject>Radiative transfer</subject><subject>Rayleigh scattering</subject><subject>Scaling</subject><subject>Scaling factors</subject><subject>Scattering angle</subject><subject>Solar radiation</subject><subject>Statistical methods</subject><subject>Sun</subject><subject>Transmittance</subject><subject>Water depth</subject><issn>0022-4928</issn><issn>1520-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkE1LAzEQhoMoWKtnrwHPsTPJbjY5Lls_KRSsnkPMJril3azZ9OC_d2udyzDDw_vCQ8gtwj1iVS5e6w1bMtQMQEyvMzLDkgODQupzMgPgnBWaq0tyNY5bmIZXOCPluqf5y9Mm7odDtrmLPY2B1sNgk-8zXXbJu0w3cWcTfbNt94dck4tgd6O_-d9z8vH48N48s9X66aWpV8wJhMwsegutUJVT4KWUDiWgdlXpdStFG1zgWkmlygCF1baqXOsEFPwz-HI6CzEnd6fcIcXvgx-z2cZD6qdKw4UWwAvFcaIWJ8qlOI7JBzOkbm_Tj0EwRzdmcmOWBrU5ujEofgHvxlVx</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Räisänen, Petri</creator><creator>Lindfors, Anders V.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20190901</creationdate><title>On the Computation of Apparent Direct Solar Radiation</title><author>Räisänen, Petri ; Lindfors, Anders V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-a1ea0d387c80e666c16019c75e9d63dfcf2986885f04a9a77cdc3042bfe59a743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerosols</topic><topic>Cloud water</topic><topic>Clouds</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Crystal morphology</topic><topic>Depth</topic><topic>Direct solar radiation</topic><topic>Field of view</topic><topic>Ice</topic><topic>Ice clouds</topic><topic>Ice crystals</topic><topic>Meteorological satellites</topic><topic>Monte Carlo simulation</topic><topic>Optical analysis</topic><topic>Optical thickness</topic><topic>Photometers</topic><topic>Pyrheliometers</topic><topic>Radiative transfer</topic><topic>Rayleigh scattering</topic><topic>Scaling</topic><topic>Scaling factors</topic><topic>Scattering angle</topic><topic>Solar radiation</topic><topic>Statistical methods</topic><topic>Sun</topic><topic>Transmittance</topic><topic>Water depth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Räisänen, Petri</creatorcontrib><creatorcontrib>Lindfors, Anders V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of the atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Räisänen, Petri</au><au>Lindfors, Anders V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Computation of Apparent Direct Solar Radiation</atitle><jtitle>Journal of the atmospheric sciences</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>76</volume><issue>9</issue><spage>2761</spage><epage>2780</epage><pages>2761-2780</pages><issn>0022-4928</issn><eissn>1520-0469</eissn><abstract>Near-forward-scattered radiation coming from the vicinity of the sun’s direction impacts the interpretation of measurements of direct solar radiation by pyrheliometers and sun photometers, and it is also relevant for concentrating solar technology applications. Here, a Monte Carlo radiative transfer model is employed to study the apparent direct solar transmittance t(α), that is, the transmittance measured by an instrument that receives the radiation within a half-field-of-view (half-FOV) angle α from the center of the solar disk, for various ice cloud, water cloud, and aerosol cases. The contribution of scattered radiation to t(α) increases with increasing particle size, and it also depends strongly on ice crystal morphology. The Monte Carlo calculations are compared with a simple approach, in which t(α) is estimated through Beer’s law, using a scaled optical depth that excludes the part of the phase function corresponding to scattering angles smaller than α. Overall, this optical depth scaling approach works very well, although with some degradation of the performance for ice clouds for very small half-FOV angles (α &lt; 0.5°–1°), and in optically thick cases. The errors can be reduced by fine-tuning the optical depth scaling factors based on the Monte Carlo results. Parameterizations are provided for computing the optical depth scaling factors for water clouds, ice clouds, aerosols, and for completeness, Rayleigh scattering to allow for a simple calculation of t(α). It is also shown that the optical depth scaling used in delta-two-stream approximations is inappropriate for simulating the direct solar radiation received by pyrheliometers.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JAS-D-19-0030.1</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-4928
ispartof Journal of the atmospheric sciences, 2019-09, Vol.76 (9), p.2761-2780
issn 0022-4928
1520-0469
language eng
recordid cdi_proquest_journals_2393024821
source American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Aerosols
Cloud water
Clouds
Computation
Computer simulation
Crystal morphology
Depth
Direct solar radiation
Field of view
Ice
Ice clouds
Ice crystals
Meteorological satellites
Monte Carlo simulation
Optical analysis
Optical thickness
Photometers
Pyrheliometers
Radiative transfer
Rayleigh scattering
Scaling
Scaling factors
Scattering angle
Solar radiation
Statistical methods
Sun
Transmittance
Water depth
title On the Computation of Apparent Direct Solar Radiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A40%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Computation%20of%20Apparent%20Direct%20Solar%20Radiation&rft.jtitle=Journal%20of%20the%20atmospheric%20sciences&rft.au=R%C3%A4is%C3%A4nen,%20Petri&rft.date=2019-09-01&rft.volume=76&rft.issue=9&rft.spage=2761&rft.epage=2780&rft.pages=2761-2780&rft.issn=0022-4928&rft.eissn=1520-0469&rft_id=info:doi/10.1175/JAS-D-19-0030.1&rft_dat=%3Cproquest_cross%3E2393024821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2393024821&rft_id=info:pmid/&rfr_iscdi=true