On the Computation of Apparent Direct Solar Radiation
Near-forward-scattered radiation coming from the vicinity of the sun’s direction impacts the interpretation of measurements of direct solar radiation by pyrheliometers and sun photometers, and it is also relevant for concentrating solar technology applications. Here, a Monte Carlo radiative transfer...
Gespeichert in:
Veröffentlicht in: | Journal of the atmospheric sciences 2019-09, Vol.76 (9), p.2761-2780 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2780 |
---|---|
container_issue | 9 |
container_start_page | 2761 |
container_title | Journal of the atmospheric sciences |
container_volume | 76 |
creator | Räisänen, Petri Lindfors, Anders V. |
description | Near-forward-scattered radiation coming from the vicinity of the sun’s direction impacts the interpretation of measurements of direct solar radiation by pyrheliometers and sun photometers, and it is also relevant for concentrating solar technology applications. Here, a Monte Carlo radiative transfer model is employed to study the apparent direct solar transmittance t(α), that is, the transmittance measured by an instrument that receives the radiation within a half-field-of-view (half-FOV) angle α from the center of the solar disk, for various ice cloud, water cloud, and aerosol cases. The contribution of scattered radiation to t(α) increases with increasing particle size, and it also depends strongly on ice crystal morphology. The Monte Carlo calculations are compared with a simple approach, in which t(α) is estimated through Beer’s law, using a scaled optical depth that excludes the part of the phase function corresponding to scattering angles smaller than α. Overall, this optical depth scaling approach works very well, although with some degradation of the performance for ice clouds for very small half-FOV angles (α < 0.5°–1°), and in optically thick cases. The errors can be reduced by fine-tuning the optical depth scaling factors based on the Monte Carlo results. Parameterizations are provided for computing the optical depth scaling factors for water clouds, ice clouds, aerosols, and for completeness, Rayleigh scattering to allow for a simple calculation of t(α). It is also shown that the optical depth scaling used in delta-two-stream approximations is inappropriate for simulating the direct solar radiation received by pyrheliometers. |
doi_str_mv | 10.1175/JAS-D-19-0030.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2393024821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2393024821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-a1ea0d387c80e666c16019c75e9d63dfcf2986885f04a9a77cdc3042bfe59a743</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWKtnrwHPsTPJbjY5Lls_KRSsnkPMJril3azZ9OC_d2udyzDDw_vCQ8gtwj1iVS5e6w1bMtQMQEyvMzLDkgODQupzMgPgnBWaq0tyNY5bmIZXOCPluqf5y9Mm7odDtrmLPY2B1sNgk-8zXXbJu0w3cWcTfbNt94dck4tgd6O_-d9z8vH48N48s9X66aWpV8wJhMwsegutUJVT4KWUDiWgdlXpdStFG1zgWkmlygCF1baqXOsEFPwz-HI6CzEnd6fcIcXvgx-z2cZD6qdKw4UWwAvFcaIWJ8qlOI7JBzOkbm_Tj0EwRzdmcmOWBrU5ujEofgHvxlVx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393024821</pqid></control><display><type>article</type><title>On the Computation of Apparent Direct Solar Radiation</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Räisänen, Petri ; Lindfors, Anders V.</creator><creatorcontrib>Räisänen, Petri ; Lindfors, Anders V.</creatorcontrib><description>Near-forward-scattered radiation coming from the vicinity of the sun’s direction impacts the interpretation of measurements of direct solar radiation by pyrheliometers and sun photometers, and it is also relevant for concentrating solar technology applications. Here, a Monte Carlo radiative transfer model is employed to study the apparent direct solar transmittance t(α), that is, the transmittance measured by an instrument that receives the radiation within a half-field-of-view (half-FOV) angle α from the center of the solar disk, for various ice cloud, water cloud, and aerosol cases. The contribution of scattered radiation to t(α) increases with increasing particle size, and it also depends strongly on ice crystal morphology. The Monte Carlo calculations are compared with a simple approach, in which t(α) is estimated through Beer’s law, using a scaled optical depth that excludes the part of the phase function corresponding to scattering angles smaller than α. Overall, this optical depth scaling approach works very well, although with some degradation of the performance for ice clouds for very small half-FOV angles (α < 0.5°–1°), and in optically thick cases. The errors can be reduced by fine-tuning the optical depth scaling factors based on the Monte Carlo results. Parameterizations are provided for computing the optical depth scaling factors for water clouds, ice clouds, aerosols, and for completeness, Rayleigh scattering to allow for a simple calculation of t(α). It is also shown that the optical depth scaling used in delta-two-stream approximations is inappropriate for simulating the direct solar radiation received by pyrheliometers.</description><identifier>ISSN: 0022-4928</identifier><identifier>EISSN: 1520-0469</identifier><identifier>DOI: 10.1175/JAS-D-19-0030.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Aerosols ; Cloud water ; Clouds ; Computation ; Computer simulation ; Crystal morphology ; Depth ; Direct solar radiation ; Field of view ; Ice ; Ice clouds ; Ice crystals ; Meteorological satellites ; Monte Carlo simulation ; Optical analysis ; Optical thickness ; Photometers ; Pyrheliometers ; Radiative transfer ; Rayleigh scattering ; Scaling ; Scaling factors ; Scattering angle ; Solar radiation ; Statistical methods ; Sun ; Transmittance ; Water depth</subject><ispartof>Journal of the atmospheric sciences, 2019-09, Vol.76 (9), p.2761-2780</ispartof><rights>Copyright American Meteorological Society Sep 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-a1ea0d387c80e666c16019c75e9d63dfcf2986885f04a9a77cdc3042bfe59a743</citedby><cites>FETCH-LOGICAL-c310t-a1ea0d387c80e666c16019c75e9d63dfcf2986885f04a9a77cdc3042bfe59a743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3681,27924,27925</link.rule.ids></links><search><creatorcontrib>Räisänen, Petri</creatorcontrib><creatorcontrib>Lindfors, Anders V.</creatorcontrib><title>On the Computation of Apparent Direct Solar Radiation</title><title>Journal of the atmospheric sciences</title><description>Near-forward-scattered radiation coming from the vicinity of the sun’s direction impacts the interpretation of measurements of direct solar radiation by pyrheliometers and sun photometers, and it is also relevant for concentrating solar technology applications. Here, a Monte Carlo radiative transfer model is employed to study the apparent direct solar transmittance t(α), that is, the transmittance measured by an instrument that receives the radiation within a half-field-of-view (half-FOV) angle α from the center of the solar disk, for various ice cloud, water cloud, and aerosol cases. The contribution of scattered radiation to t(α) increases with increasing particle size, and it also depends strongly on ice crystal morphology. The Monte Carlo calculations are compared with a simple approach, in which t(α) is estimated through Beer’s law, using a scaled optical depth that excludes the part of the phase function corresponding to scattering angles smaller than α. Overall, this optical depth scaling approach works very well, although with some degradation of the performance for ice clouds for very small half-FOV angles (α < 0.5°–1°), and in optically thick cases. The errors can be reduced by fine-tuning the optical depth scaling factors based on the Monte Carlo results. Parameterizations are provided for computing the optical depth scaling factors for water clouds, ice clouds, aerosols, and for completeness, Rayleigh scattering to allow for a simple calculation of t(α). It is also shown that the optical depth scaling used in delta-two-stream approximations is inappropriate for simulating the direct solar radiation received by pyrheliometers.</description><subject>Aerosols</subject><subject>Cloud water</subject><subject>Clouds</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Crystal morphology</subject><subject>Depth</subject><subject>Direct solar radiation</subject><subject>Field of view</subject><subject>Ice</subject><subject>Ice clouds</subject><subject>Ice crystals</subject><subject>Meteorological satellites</subject><subject>Monte Carlo simulation</subject><subject>Optical analysis</subject><subject>Optical thickness</subject><subject>Photometers</subject><subject>Pyrheliometers</subject><subject>Radiative transfer</subject><subject>Rayleigh scattering</subject><subject>Scaling</subject><subject>Scaling factors</subject><subject>Scattering angle</subject><subject>Solar radiation</subject><subject>Statistical methods</subject><subject>Sun</subject><subject>Transmittance</subject><subject>Water depth</subject><issn>0022-4928</issn><issn>1520-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkE1LAzEQhoMoWKtnrwHPsTPJbjY5Lls_KRSsnkPMJril3azZ9OC_d2udyzDDw_vCQ8gtwj1iVS5e6w1bMtQMQEyvMzLDkgODQupzMgPgnBWaq0tyNY5bmIZXOCPluqf5y9Mm7odDtrmLPY2B1sNgk-8zXXbJu0w3cWcTfbNt94dck4tgd6O_-d9z8vH48N48s9X66aWpV8wJhMwsegutUJVT4KWUDiWgdlXpdStFG1zgWkmlygCF1baqXOsEFPwz-HI6CzEnd6fcIcXvgx-z2cZD6qdKw4UWwAvFcaIWJ8qlOI7JBzOkbm_Tj0EwRzdmcmOWBrU5ujEofgHvxlVx</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Räisänen, Petri</creator><creator>Lindfors, Anders V.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20190901</creationdate><title>On the Computation of Apparent Direct Solar Radiation</title><author>Räisänen, Petri ; Lindfors, Anders V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-a1ea0d387c80e666c16019c75e9d63dfcf2986885f04a9a77cdc3042bfe59a743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerosols</topic><topic>Cloud water</topic><topic>Clouds</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Crystal morphology</topic><topic>Depth</topic><topic>Direct solar radiation</topic><topic>Field of view</topic><topic>Ice</topic><topic>Ice clouds</topic><topic>Ice crystals</topic><topic>Meteorological satellites</topic><topic>Monte Carlo simulation</topic><topic>Optical analysis</topic><topic>Optical thickness</topic><topic>Photometers</topic><topic>Pyrheliometers</topic><topic>Radiative transfer</topic><topic>Rayleigh scattering</topic><topic>Scaling</topic><topic>Scaling factors</topic><topic>Scattering angle</topic><topic>Solar radiation</topic><topic>Statistical methods</topic><topic>Sun</topic><topic>Transmittance</topic><topic>Water depth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Räisänen, Petri</creatorcontrib><creatorcontrib>Lindfors, Anders V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of the atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Räisänen, Petri</au><au>Lindfors, Anders V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Computation of Apparent Direct Solar Radiation</atitle><jtitle>Journal of the atmospheric sciences</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>76</volume><issue>9</issue><spage>2761</spage><epage>2780</epage><pages>2761-2780</pages><issn>0022-4928</issn><eissn>1520-0469</eissn><abstract>Near-forward-scattered radiation coming from the vicinity of the sun’s direction impacts the interpretation of measurements of direct solar radiation by pyrheliometers and sun photometers, and it is also relevant for concentrating solar technology applications. Here, a Monte Carlo radiative transfer model is employed to study the apparent direct solar transmittance t(α), that is, the transmittance measured by an instrument that receives the radiation within a half-field-of-view (half-FOV) angle α from the center of the solar disk, for various ice cloud, water cloud, and aerosol cases. The contribution of scattered radiation to t(α) increases with increasing particle size, and it also depends strongly on ice crystal morphology. The Monte Carlo calculations are compared with a simple approach, in which t(α) is estimated through Beer’s law, using a scaled optical depth that excludes the part of the phase function corresponding to scattering angles smaller than α. Overall, this optical depth scaling approach works very well, although with some degradation of the performance for ice clouds for very small half-FOV angles (α < 0.5°–1°), and in optically thick cases. The errors can be reduced by fine-tuning the optical depth scaling factors based on the Monte Carlo results. Parameterizations are provided for computing the optical depth scaling factors for water clouds, ice clouds, aerosols, and for completeness, Rayleigh scattering to allow for a simple calculation of t(α). It is also shown that the optical depth scaling used in delta-two-stream approximations is inappropriate for simulating the direct solar radiation received by pyrheliometers.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JAS-D-19-0030.1</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4928 |
ispartof | Journal of the atmospheric sciences, 2019-09, Vol.76 (9), p.2761-2780 |
issn | 0022-4928 1520-0469 |
language | eng |
recordid | cdi_proquest_journals_2393024821 |
source | American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Aerosols Cloud water Clouds Computation Computer simulation Crystal morphology Depth Direct solar radiation Field of view Ice Ice clouds Ice crystals Meteorological satellites Monte Carlo simulation Optical analysis Optical thickness Photometers Pyrheliometers Radiative transfer Rayleigh scattering Scaling Scaling factors Scattering angle Solar radiation Statistical methods Sun Transmittance Water depth |
title | On the Computation of Apparent Direct Solar Radiation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A40%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Computation%20of%20Apparent%20Direct%20Solar%20Radiation&rft.jtitle=Journal%20of%20the%20atmospheric%20sciences&rft.au=R%C3%A4is%C3%A4nen,%20Petri&rft.date=2019-09-01&rft.volume=76&rft.issue=9&rft.spage=2761&rft.epage=2780&rft.pages=2761-2780&rft.issn=0022-4928&rft.eissn=1520-0469&rft_id=info:doi/10.1175/JAS-D-19-0030.1&rft_dat=%3Cproquest_cross%3E2393024821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2393024821&rft_id=info:pmid/&rfr_iscdi=true |