Tunable chemical complexity to control atomic diffusion in alloys

In this paper we report a new fundamental understanding of chemically-biased diffusion in Ni–Fe random alloys that is tuned/controlled by the intrinsic quantifiable chemical complexity. Development of radiation-tolerant alloys has been a long-standing challenge. Here we show how intrinsic chemical c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:npj computational materials 2020-04, Vol.6 (1), Article 38
Hauptverfasser: Osetsky, Yuri, Barashev, Alexander V., Béland, Laurent K., Yao, Zhongwen, Ferasat, Keyvan, Zhang, Yanwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title npj computational materials
container_volume 6
creator Osetsky, Yuri
Barashev, Alexander V.
Béland, Laurent K.
Yao, Zhongwen
Ferasat, Keyvan
Zhang, Yanwen
description In this paper we report a new fundamental understanding of chemically-biased diffusion in Ni–Fe random alloys that is tuned/controlled by the intrinsic quantifiable chemical complexity. Development of radiation-tolerant alloys has been a long-standing challenge. Here we show how intrinsic chemical complexity can be utilized to guide the atomic diffusion and suppress radiation damage. The influence of chemical complexity is shown by the example of interstitial atom (IA) diffusion that is the most important defect in radiation effects. We use μs-scale molecular dynamics to reveal sluggish diffusion and percolation of IAs in concentrated Ni–Fe alloys. We develop a mean field diffusion model to take into account the effect of migrating defect energy properties on diffusion percolation, which is verified by a new kinetic Monte Carlo approach addressing detailed processes. We demonstrate that the local variations in the ground state energy of IA configurations in alloys, reflecting the chemical difference between alloying components, drives the percolation effects for atomic diffusion. Percolation, chemically-biased and sluggish diffusion are phenomena that are directly related to the chemical complexity intrinsically to multicomponent alloys.
doi_str_mv 10.1038/s41524-020-0306-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2393017286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488776288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-6429ddbb08dc0a28f8decb31cc40658803113ddfa456f7fabaea6910ace05b593</originalsourceid><addsrcrecordid>eNqNkUtLxDAYRYsoKOoPcFd0KdUvz6ZLGXyB4EbXIU0TJ0MnGZsUnX9vSkXdKK6SkHM_bk6K4gTBBQIiLiNFDNMKMFRAgFfNTnGAgdUVaTjs_tjvF8cxrgAANVhgCgfF1dPoVdubUi_N2mnVlzqsN715d2lbppBPPg2hL1UK-brsnLVjdMGXzpeq78M2HhV7VvXRHH-uh8XzzfXT4q56eLy9X1w9VJoimipOcdN1bQui06CwsKIzuiVIawqcCQEEIdJ1VlHGbW1Vq4ziDQKlDbCWNeSwOJ3nhpicjNolo5e5njc6ScQRE4hn6GyGNkN4HU1MchXGwedeElMh6ppjIf6kSEMA1VhMs9BM6SHEOBgrN4Nbq2ErEcjJu5y9y-xdTt7lVFLMmTfTBptLGq_NVy6LZ7jmgtUw_cHCJZWyy0UYfcrR8_9HM41nOmbCv5jh-wm_t_sAYG6kow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393017286</pqid></control><display><type>article</type><title>Tunable chemical complexity to control atomic diffusion in alloys</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Nature Free</source><source>Springer Nature OA/Free Journals</source><creator>Osetsky, Yuri ; Barashev, Alexander V. ; Béland, Laurent K. ; Yao, Zhongwen ; Ferasat, Keyvan ; Zhang, Yanwen</creator><creatorcontrib>Osetsky, Yuri ; Barashev, Alexander V. ; Béland, Laurent K. ; Yao, Zhongwen ; Ferasat, Keyvan ; Zhang, Yanwen ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>In this paper we report a new fundamental understanding of chemically-biased diffusion in Ni–Fe random alloys that is tuned/controlled by the intrinsic quantifiable chemical complexity. Development of radiation-tolerant alloys has been a long-standing challenge. Here we show how intrinsic chemical complexity can be utilized to guide the atomic diffusion and suppress radiation damage. The influence of chemical complexity is shown by the example of interstitial atom (IA) diffusion that is the most important defect in radiation effects. We use μs-scale molecular dynamics to reveal sluggish diffusion and percolation of IAs in concentrated Ni–Fe alloys. We develop a mean field diffusion model to take into account the effect of migrating defect energy properties on diffusion percolation, which is verified by a new kinetic Monte Carlo approach addressing detailed processes. We demonstrate that the local variations in the ground state energy of IA configurations in alloys, reflecting the chemical difference between alloying components, drives the percolation effects for atomic diffusion. Percolation, chemically-biased and sluggish diffusion are phenomena that are directly related to the chemical complexity intrinsically to multicomponent alloys.</description><identifier>ISSN: 2057-3960</identifier><identifier>EISSN: 2057-3960</identifier><identifier>DOI: 10.1038/s41524-020-0306-9</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1023/1026 ; 639/301/119 ; Alloy development ; Alloying effects ; Alloys ; Characterization and Evaluation of Materials ; Chemical damage ; Chemistry ; Chemistry and Materials Science ; Chemistry, Physical ; Complexity ; Computational Intelligence ; Computer simulation ; Diffusion ; Diffusion effects ; Iron ; MATERIALS SCIENCE ; Materials Science, Multidisciplinary ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Molecular dynamics ; Nickel base alloys ; Percolation ; Physical Sciences ; Radiation damage ; Radiation effects ; Science &amp; Technology ; Technology ; Theoretical</subject><ispartof>npj computational materials, 2020-04, Vol.6 (1), Article 38</ispartof><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020</rights><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>41</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000527685700001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c414t-6429ddbb08dc0a28f8decb31cc40658803113ddfa456f7fabaea6910ace05b593</citedby><cites>FETCH-LOGICAL-c414t-6429ddbb08dc0a28f8decb31cc40658803113ddfa456f7fabaea6910ace05b593</cites><orcidid>0000-0002-8109-0030 ; 0000-0003-1833-3885 ; 0000000281090030 ; 0000000318333885</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41524-020-0306-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41524-020-0306-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,865,886,2115,27928,27929,41124,42193,51580</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1615816$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Osetsky, Yuri</creatorcontrib><creatorcontrib>Barashev, Alexander V.</creatorcontrib><creatorcontrib>Béland, Laurent K.</creatorcontrib><creatorcontrib>Yao, Zhongwen</creatorcontrib><creatorcontrib>Ferasat, Keyvan</creatorcontrib><creatorcontrib>Zhang, Yanwen</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Tunable chemical complexity to control atomic diffusion in alloys</title><title>npj computational materials</title><addtitle>npj Comput Mater</addtitle><addtitle>NPJ COMPUT MATER</addtitle><description>In this paper we report a new fundamental understanding of chemically-biased diffusion in Ni–Fe random alloys that is tuned/controlled by the intrinsic quantifiable chemical complexity. Development of radiation-tolerant alloys has been a long-standing challenge. Here we show how intrinsic chemical complexity can be utilized to guide the atomic diffusion and suppress radiation damage. The influence of chemical complexity is shown by the example of interstitial atom (IA) diffusion that is the most important defect in radiation effects. We use μs-scale molecular dynamics to reveal sluggish diffusion and percolation of IAs in concentrated Ni–Fe alloys. We develop a mean field diffusion model to take into account the effect of migrating defect energy properties on diffusion percolation, which is verified by a new kinetic Monte Carlo approach addressing detailed processes. We demonstrate that the local variations in the ground state energy of IA configurations in alloys, reflecting the chemical difference between alloying components, drives the percolation effects for atomic diffusion. Percolation, chemically-biased and sluggish diffusion are phenomena that are directly related to the chemical complexity intrinsically to multicomponent alloys.</description><subject>639/301/1023/1026</subject><subject>639/301/119</subject><subject>Alloy development</subject><subject>Alloying effects</subject><subject>Alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical damage</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry, Physical</subject><subject>Complexity</subject><subject>Computational Intelligence</subject><subject>Computer simulation</subject><subject>Diffusion</subject><subject>Diffusion effects</subject><subject>Iron</subject><subject>MATERIALS SCIENCE</subject><subject>Materials Science, Multidisciplinary</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Molecular dynamics</subject><subject>Nickel base alloys</subject><subject>Percolation</subject><subject>Physical Sciences</subject><subject>Radiation damage</subject><subject>Radiation effects</subject><subject>Science &amp; Technology</subject><subject>Technology</subject><subject>Theoretical</subject><issn>2057-3960</issn><issn>2057-3960</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkUtLxDAYRYsoKOoPcFd0KdUvz6ZLGXyB4EbXIU0TJ0MnGZsUnX9vSkXdKK6SkHM_bk6K4gTBBQIiLiNFDNMKMFRAgFfNTnGAgdUVaTjs_tjvF8cxrgAANVhgCgfF1dPoVdubUi_N2mnVlzqsN715d2lbppBPPg2hL1UK-brsnLVjdMGXzpeq78M2HhV7VvXRHH-uh8XzzfXT4q56eLy9X1w9VJoimipOcdN1bQui06CwsKIzuiVIawqcCQEEIdJ1VlHGbW1Vq4ziDQKlDbCWNeSwOJ3nhpicjNolo5e5njc6ScQRE4hn6GyGNkN4HU1MchXGwedeElMh6ppjIf6kSEMA1VhMs9BM6SHEOBgrN4Nbq2ErEcjJu5y9y-xdTt7lVFLMmTfTBptLGq_NVy6LZ7jmgtUw_cHCJZWyy0UYfcrR8_9HM41nOmbCv5jh-wm_t_sAYG6kow</recordid><startdate>20200421</startdate><enddate>20200421</enddate><creator>Osetsky, Yuri</creator><creator>Barashev, Alexander V.</creator><creator>Béland, Laurent K.</creator><creator>Yao, Zhongwen</creator><creator>Ferasat, Keyvan</creator><creator>Zhang, Yanwen</creator><general>Nature Publishing Group UK</general><general>Springer Nature</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8109-0030</orcidid><orcidid>https://orcid.org/0000-0003-1833-3885</orcidid><orcidid>https://orcid.org/0000000281090030</orcidid><orcidid>https://orcid.org/0000000318333885</orcidid></search><sort><creationdate>20200421</creationdate><title>Tunable chemical complexity to control atomic diffusion in alloys</title><author>Osetsky, Yuri ; Barashev, Alexander V. ; Béland, Laurent K. ; Yao, Zhongwen ; Ferasat, Keyvan ; Zhang, Yanwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-6429ddbb08dc0a28f8decb31cc40658803113ddfa456f7fabaea6910ace05b593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/1023/1026</topic><topic>639/301/119</topic><topic>Alloy development</topic><topic>Alloying effects</topic><topic>Alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical damage</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry, Physical</topic><topic>Complexity</topic><topic>Computational Intelligence</topic><topic>Computer simulation</topic><topic>Diffusion</topic><topic>Diffusion effects</topic><topic>Iron</topic><topic>MATERIALS SCIENCE</topic><topic>Materials Science, Multidisciplinary</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Molecular dynamics</topic><topic>Nickel base alloys</topic><topic>Percolation</topic><topic>Physical Sciences</topic><topic>Radiation damage</topic><topic>Radiation effects</topic><topic>Science &amp; Technology</topic><topic>Technology</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osetsky, Yuri</creatorcontrib><creatorcontrib>Barashev, Alexander V.</creatorcontrib><creatorcontrib>Béland, Laurent K.</creatorcontrib><creatorcontrib>Yao, Zhongwen</creatorcontrib><creatorcontrib>Ferasat, Keyvan</creatorcontrib><creatorcontrib>Zhang, Yanwen</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>npj computational materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osetsky, Yuri</au><au>Barashev, Alexander V.</au><au>Béland, Laurent K.</au><au>Yao, Zhongwen</au><au>Ferasat, Keyvan</au><au>Zhang, Yanwen</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable chemical complexity to control atomic diffusion in alloys</atitle><jtitle>npj computational materials</jtitle><stitle>npj Comput Mater</stitle><stitle>NPJ COMPUT MATER</stitle><date>2020-04-21</date><risdate>2020</risdate><volume>6</volume><issue>1</issue><artnum>38</artnum><issn>2057-3960</issn><eissn>2057-3960</eissn><abstract>In this paper we report a new fundamental understanding of chemically-biased diffusion in Ni–Fe random alloys that is tuned/controlled by the intrinsic quantifiable chemical complexity. Development of radiation-tolerant alloys has been a long-standing challenge. Here we show how intrinsic chemical complexity can be utilized to guide the atomic diffusion and suppress radiation damage. The influence of chemical complexity is shown by the example of interstitial atom (IA) diffusion that is the most important defect in radiation effects. We use μs-scale molecular dynamics to reveal sluggish diffusion and percolation of IAs in concentrated Ni–Fe alloys. We develop a mean field diffusion model to take into account the effect of migrating defect energy properties on diffusion percolation, which is verified by a new kinetic Monte Carlo approach addressing detailed processes. We demonstrate that the local variations in the ground state energy of IA configurations in alloys, reflecting the chemical difference between alloying components, drives the percolation effects for atomic diffusion. Percolation, chemically-biased and sluggish diffusion are phenomena that are directly related to the chemical complexity intrinsically to multicomponent alloys.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41524-020-0306-9</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8109-0030</orcidid><orcidid>https://orcid.org/0000-0003-1833-3885</orcidid><orcidid>https://orcid.org/0000000281090030</orcidid><orcidid>https://orcid.org/0000000318333885</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2057-3960
ispartof npj computational materials, 2020-04, Vol.6 (1), Article 38
issn 2057-3960
2057-3960
language eng
recordid cdi_proquest_journals_2393017286
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Nature Free; Springer Nature OA/Free Journals
subjects 639/301/1023/1026
639/301/119
Alloy development
Alloying effects
Alloys
Characterization and Evaluation of Materials
Chemical damage
Chemistry
Chemistry and Materials Science
Chemistry, Physical
Complexity
Computational Intelligence
Computer simulation
Diffusion
Diffusion effects
Iron
MATERIALS SCIENCE
Materials Science, Multidisciplinary
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Molecular dynamics
Nickel base alloys
Percolation
Physical Sciences
Radiation damage
Radiation effects
Science & Technology
Technology
Theoretical
title Tunable chemical complexity to control atomic diffusion in alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T00%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20chemical%20complexity%20to%20control%20atomic%20diffusion%20in%20alloys&rft.jtitle=npj%20computational%20materials&rft.au=Osetsky,%20Yuri&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2020-04-21&rft.volume=6&rft.issue=1&rft.artnum=38&rft.issn=2057-3960&rft.eissn=2057-3960&rft_id=info:doi/10.1038/s41524-020-0306-9&rft_dat=%3Cproquest_cross%3E2488776288%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2393017286&rft_id=info:pmid/&rfr_iscdi=true