Condensational and Collisional Growth of Cloud Droplets in a Turbulent Environment
We investigate the effect of turbulence on the combined condensational and collisional growth of cloud droplets by means of high-resolution direct numerical simulations of turbulence and a superparticle approximation for droplet dynamics and collisions. The droplets are subject to turbulence as well...
Gespeichert in:
Veröffentlicht in: | Journal of the atmospheric sciences 2020-01, Vol.77 (1), p.337-353 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 353 |
---|---|
container_issue | 1 |
container_start_page | 337 |
container_title | Journal of the atmospheric sciences |
container_volume | 77 |
creator | Li, Xiang-Yu Brandenburg, Axel Svensson, Gunilla Haugen, Nils E. L. Mehlig, Bernhard Rogachevskii, Igor |
description | We investigate the effect of turbulence on the combined condensational and collisional growth of cloud droplets by means of high-resolution direct numerical simulations of turbulence and a superparticle approximation for droplet dynamics and collisions. The droplets are subject to turbulence as well as gravity, and their collision and coalescence efficiencies are taken to be unity. We solve the thermodynamic equations governing temperature, water vapor mixing ratio, and the resulting supersaturation fields together with the Navier–Stokes equation. We find that the droplet size distribution broadens with increasing Reynolds number and/or mean energy dissipation rate. Turbulence affects the condensational growth directly through supersaturation fluctuations, and it influences collisional growth indirectly through condensation. Our simulations show for the first time that, in the absence of the mean updraft cooling, supersaturation-fluctuation-induced broadening of droplet size distributions enhances the collisional growth. This is contrary to classical (nonturbulent) condensational growth, which leads to a growing mean droplet size, but a narrower droplet size distribution. Our findings, instead, show that condensational growth facilitates collisional growth by broadening the size distribution in the tails at an early stage of rain formation. With increasing Reynolds numbers, evaporation becomes stronger. This counteracts the broadening effect due to condensation at late stages of rain formation. Our conclusions are consistent with results of laboratory experiments and field observations, and show that supersaturation fluctuations are important for precipitation. |
doi_str_mv | 10.1175/JAS-D-19-0107.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_proquest_journals_2392620060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2392620060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-de9b4164ea80de516cd90300f397e1eb051ab00a1bcf1446d590b7f20b91ec83</originalsourceid><addsrcrecordid>eNp9kT1v2zAQhomiAeImnbMSyFrGd5REiaMhp2kLAwESo-uBkihHiSyqpFgj_z4yXGRrbrkPPHiGexm7QrhBzLPlr9WjWAvUAhDyG_zEFphJEJAq_ZktAKQUqZbFOfsSwjPMJXNcsIfSDY0dgpk6N5iem6Hhpev7Lpz2O-8O0xN3LS97Fxu-9m7s7RR4N3DDt9FXsbfDxG-Hv513w36eL9lZa_pgv_7rF2z7_XZb_hCb-7uf5Woj6lQmk2isrlJUqTUFNDZDVTcaEoA20blFW0GGpgIwWNUtpqlqMg1V3kqoNNq6SC6YOGnDwY6xotF3e-NfyZmOdnGk-bSLFCzJQqcoZ_7bf_l193tFzu8oRMK8UJn6UP-Ov0xPJJXKkqP--sSP3v2JNkz07KKfXxhIJloqCaBgppYnqvYuBG_bdy8CHWOkOUZaE2o6xkiYvAHLvZEH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2392620060</pqid></control><display><type>article</type><title>Condensational and Collisional Growth of Cloud Droplets in a Turbulent Environment</title><source>American Meteorological Society</source><source>SWEPUB Freely available online</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Li, Xiang-Yu ; Brandenburg, Axel ; Svensson, Gunilla ; Haugen, Nils E. L. ; Mehlig, Bernhard ; Rogachevskii, Igor</creator><creatorcontrib>Li, Xiang-Yu ; Brandenburg, Axel ; Svensson, Gunilla ; Haugen, Nils E. L. ; Mehlig, Bernhard ; Rogachevskii, Igor</creatorcontrib><description>We investigate the effect of turbulence on the combined condensational and collisional growth of cloud droplets by means of high-resolution direct numerical simulations of turbulence and a superparticle approximation for droplet dynamics and collisions. The droplets are subject to turbulence as well as gravity, and their collision and coalescence efficiencies are taken to be unity. We solve the thermodynamic equations governing temperature, water vapor mixing ratio, and the resulting supersaturation fields together with the Navier–Stokes equation. We find that the droplet size distribution broadens with increasing Reynolds number and/or mean energy dissipation rate. Turbulence affects the condensational growth directly through supersaturation fluctuations, and it influences collisional growth indirectly through condensation. Our simulations show for the first time that, in the absence of the mean updraft cooling, supersaturation-fluctuation-induced broadening of droplet size distributions enhances the collisional growth. This is contrary to classical (nonturbulent) condensational growth, which leads to a growing mean droplet size, but a narrower droplet size distribution. Our findings, instead, show that condensational growth facilitates collisional growth by broadening the size distribution in the tails at an early stage of rain formation. With increasing Reynolds numbers, evaporation becomes stronger. This counteracts the broadening effect due to condensation at late stages of rain formation. Our conclusions are consistent with results of laboratory experiments and field observations, and show that supersaturation fluctuations are important for precipitation.</description><identifier>ISSN: 0022-4928</identifier><identifier>ISSN: 1520-0469</identifier><identifier>EISSN: 1520-0469</identifier><identifier>DOI: 10.1175/JAS-D-19-0107.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>aerosol-particles ; approach ; Approximation ; atmosfärvetenskap och oceanografi ; Atmospheric Sciences and Oceanography ; Cloud droplet collision ; Cloud droplet growth ; Cloud droplets ; Cloud microphysics ; Coalescence ; Coalescing ; Computational fluid dynamics ; Computer simulation ; Condensation ; Cooling ; Droplets ; drops ; Energy dissipation ; Energy exchange ; Evaporation ; flow ; Fluctuations ; Fluid flow ; Gravity ; heavy-particles ; Laboratory experiments ; Meteorologi och atmosfärforskning ; Meteorology & Atmospheric Sciences ; Meteorology and Atmospheric Sciences ; microscopic ; Mixing ratio ; Navier-Stokes equations ; Numerical simulations ; numerical-simulation ; part ii ; Rain ; Rain formation ; Reynolds number ; Simulation ; Size distribution ; stochastic condensation ; Supersaturation ; Turbulence ; Water vapor ; Water vapour</subject><ispartof>Journal of the atmospheric sciences, 2020-01, Vol.77 (1), p.337-353</ispartof><rights>Copyright American Meteorological Society Jan 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-de9b4164ea80de516cd90300f397e1eb051ab00a1bcf1446d590b7f20b91ec83</citedby><cites>FETCH-LOGICAL-c423t-de9b4164ea80de516cd90300f397e1eb051ab00a1bcf1446d590b7f20b91ec83</cites><orcidid>0000-0002-5722-0018</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,552,780,784,885,3681,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-266532$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-178656$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://gup.ub.gu.se/publication/289412$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xiang-Yu</creatorcontrib><creatorcontrib>Brandenburg, Axel</creatorcontrib><creatorcontrib>Svensson, Gunilla</creatorcontrib><creatorcontrib>Haugen, Nils E. L.</creatorcontrib><creatorcontrib>Mehlig, Bernhard</creatorcontrib><creatorcontrib>Rogachevskii, Igor</creatorcontrib><title>Condensational and Collisional Growth of Cloud Droplets in a Turbulent Environment</title><title>Journal of the atmospheric sciences</title><description>We investigate the effect of turbulence on the combined condensational and collisional growth of cloud droplets by means of high-resolution direct numerical simulations of turbulence and a superparticle approximation for droplet dynamics and collisions. The droplets are subject to turbulence as well as gravity, and their collision and coalescence efficiencies are taken to be unity. We solve the thermodynamic equations governing temperature, water vapor mixing ratio, and the resulting supersaturation fields together with the Navier–Stokes equation. We find that the droplet size distribution broadens with increasing Reynolds number and/or mean energy dissipation rate. Turbulence affects the condensational growth directly through supersaturation fluctuations, and it influences collisional growth indirectly through condensation. Our simulations show for the first time that, in the absence of the mean updraft cooling, supersaturation-fluctuation-induced broadening of droplet size distributions enhances the collisional growth. This is contrary to classical (nonturbulent) condensational growth, which leads to a growing mean droplet size, but a narrower droplet size distribution. Our findings, instead, show that condensational growth facilitates collisional growth by broadening the size distribution in the tails at an early stage of rain formation. With increasing Reynolds numbers, evaporation becomes stronger. This counteracts the broadening effect due to condensation at late stages of rain formation. Our conclusions are consistent with results of laboratory experiments and field observations, and show that supersaturation fluctuations are important for precipitation.</description><subject>aerosol-particles</subject><subject>approach</subject><subject>Approximation</subject><subject>atmosfärvetenskap och oceanografi</subject><subject>Atmospheric Sciences and Oceanography</subject><subject>Cloud droplet collision</subject><subject>Cloud droplet growth</subject><subject>Cloud droplets</subject><subject>Cloud microphysics</subject><subject>Coalescence</subject><subject>Coalescing</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Condensation</subject><subject>Cooling</subject><subject>Droplets</subject><subject>drops</subject><subject>Energy dissipation</subject><subject>Energy exchange</subject><subject>Evaporation</subject><subject>flow</subject><subject>Fluctuations</subject><subject>Fluid flow</subject><subject>Gravity</subject><subject>heavy-particles</subject><subject>Laboratory experiments</subject><subject>Meteorologi och atmosfärforskning</subject><subject>Meteorology & Atmospheric Sciences</subject><subject>Meteorology and Atmospheric Sciences</subject><subject>microscopic</subject><subject>Mixing ratio</subject><subject>Navier-Stokes equations</subject><subject>Numerical simulations</subject><subject>numerical-simulation</subject><subject>part ii</subject><subject>Rain</subject><subject>Rain formation</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>Size distribution</subject><subject>stochastic condensation</subject><subject>Supersaturation</subject><subject>Turbulence</subject><subject>Water vapor</subject><subject>Water vapour</subject><issn>0022-4928</issn><issn>1520-0469</issn><issn>1520-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>D8T</sourceid><recordid>eNp9kT1v2zAQhomiAeImnbMSyFrGd5REiaMhp2kLAwESo-uBkihHiSyqpFgj_z4yXGRrbrkPPHiGexm7QrhBzLPlr9WjWAvUAhDyG_zEFphJEJAq_ZktAKQUqZbFOfsSwjPMJXNcsIfSDY0dgpk6N5iem6Hhpev7Lpz2O-8O0xN3LS97Fxu-9m7s7RR4N3DDt9FXsbfDxG-Hv513w36eL9lZa_pgv_7rF2z7_XZb_hCb-7uf5Woj6lQmk2isrlJUqTUFNDZDVTcaEoA20blFW0GGpgIwWNUtpqlqMg1V3kqoNNq6SC6YOGnDwY6xotF3e-NfyZmOdnGk-bSLFCzJQqcoZ_7bf_l193tFzu8oRMK8UJn6UP-Ov0xPJJXKkqP--sSP3v2JNkz07KKfXxhIJloqCaBgppYnqvYuBG_bdy8CHWOkOUZaE2o6xkiYvAHLvZEH</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Li, Xiang-Yu</creator><creator>Brandenburg, Axel</creator><creator>Svensson, Gunilla</creator><creator>Haugen, Nils E. L.</creator><creator>Mehlig, Bernhard</creator><creator>Rogachevskii, Igor</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope><scope>DG7</scope><scope>F1U</scope><orcidid>https://orcid.org/0000-0002-5722-0018</orcidid></search><sort><creationdate>202001</creationdate><title>Condensational and Collisional Growth of Cloud Droplets in a Turbulent Environment</title><author>Li, Xiang-Yu ; Brandenburg, Axel ; Svensson, Gunilla ; Haugen, Nils E. L. ; Mehlig, Bernhard ; Rogachevskii, Igor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-de9b4164ea80de516cd90300f397e1eb051ab00a1bcf1446d590b7f20b91ec83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>aerosol-particles</topic><topic>approach</topic><topic>Approximation</topic><topic>atmosfärvetenskap och oceanografi</topic><topic>Atmospheric Sciences and Oceanography</topic><topic>Cloud droplet collision</topic><topic>Cloud droplet growth</topic><topic>Cloud droplets</topic><topic>Cloud microphysics</topic><topic>Coalescence</topic><topic>Coalescing</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Condensation</topic><topic>Cooling</topic><topic>Droplets</topic><topic>drops</topic><topic>Energy dissipation</topic><topic>Energy exchange</topic><topic>Evaporation</topic><topic>flow</topic><topic>Fluctuations</topic><topic>Fluid flow</topic><topic>Gravity</topic><topic>heavy-particles</topic><topic>Laboratory experiments</topic><topic>Meteorologi och atmosfärforskning</topic><topic>Meteorology & Atmospheric Sciences</topic><topic>Meteorology and Atmospheric Sciences</topic><topic>microscopic</topic><topic>Mixing ratio</topic><topic>Navier-Stokes equations</topic><topic>Numerical simulations</topic><topic>numerical-simulation</topic><topic>part ii</topic><topic>Rain</topic><topic>Rain formation</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>Size distribution</topic><topic>stochastic condensation</topic><topic>Supersaturation</topic><topic>Turbulence</topic><topic>Water vapor</topic><topic>Water vapour</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiang-Yu</creatorcontrib><creatorcontrib>Brandenburg, Axel</creatorcontrib><creatorcontrib>Svensson, Gunilla</creatorcontrib><creatorcontrib>Haugen, Nils E. L.</creatorcontrib><creatorcontrib>Mehlig, Bernhard</creatorcontrib><creatorcontrib>Rogachevskii, Igor</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><collection>SWEPUB Stockholms universitet</collection><collection>SWEPUB Göteborgs universitet</collection><jtitle>Journal of the atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiang-Yu</au><au>Brandenburg, Axel</au><au>Svensson, Gunilla</au><au>Haugen, Nils E. L.</au><au>Mehlig, Bernhard</au><au>Rogachevskii, Igor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Condensational and Collisional Growth of Cloud Droplets in a Turbulent Environment</atitle><jtitle>Journal of the atmospheric sciences</jtitle><date>2020-01</date><risdate>2020</risdate><volume>77</volume><issue>1</issue><spage>337</spage><epage>353</epage><pages>337-353</pages><issn>0022-4928</issn><issn>1520-0469</issn><eissn>1520-0469</eissn><abstract>We investigate the effect of turbulence on the combined condensational and collisional growth of cloud droplets by means of high-resolution direct numerical simulations of turbulence and a superparticle approximation for droplet dynamics and collisions. The droplets are subject to turbulence as well as gravity, and their collision and coalescence efficiencies are taken to be unity. We solve the thermodynamic equations governing temperature, water vapor mixing ratio, and the resulting supersaturation fields together with the Navier–Stokes equation. We find that the droplet size distribution broadens with increasing Reynolds number and/or mean energy dissipation rate. Turbulence affects the condensational growth directly through supersaturation fluctuations, and it influences collisional growth indirectly through condensation. Our simulations show for the first time that, in the absence of the mean updraft cooling, supersaturation-fluctuation-induced broadening of droplet size distributions enhances the collisional growth. This is contrary to classical (nonturbulent) condensational growth, which leads to a growing mean droplet size, but a narrower droplet size distribution. Our findings, instead, show that condensational growth facilitates collisional growth by broadening the size distribution in the tails at an early stage of rain formation. With increasing Reynolds numbers, evaporation becomes stronger. This counteracts the broadening effect due to condensation at late stages of rain formation. Our conclusions are consistent with results of laboratory experiments and field observations, and show that supersaturation fluctuations are important for precipitation.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JAS-D-19-0107.1</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5722-0018</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4928 |
ispartof | Journal of the atmospheric sciences, 2020-01, Vol.77 (1), p.337-353 |
issn | 0022-4928 1520-0469 1520-0469 |
language | eng |
recordid | cdi_proquest_journals_2392620060 |
source | American Meteorological Society; SWEPUB Freely available online; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | aerosol-particles approach Approximation atmosfärvetenskap och oceanografi Atmospheric Sciences and Oceanography Cloud droplet collision Cloud droplet growth Cloud droplets Cloud microphysics Coalescence Coalescing Computational fluid dynamics Computer simulation Condensation Cooling Droplets drops Energy dissipation Energy exchange Evaporation flow Fluctuations Fluid flow Gravity heavy-particles Laboratory experiments Meteorologi och atmosfärforskning Meteorology & Atmospheric Sciences Meteorology and Atmospheric Sciences microscopic Mixing ratio Navier-Stokes equations Numerical simulations numerical-simulation part ii Rain Rain formation Reynolds number Simulation Size distribution stochastic condensation Supersaturation Turbulence Water vapor Water vapour |
title | Condensational and Collisional Growth of Cloud Droplets in a Turbulent Environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A36%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Condensational%20and%20Collisional%20Growth%20of%20Cloud%20Droplets%20in%20a%20Turbulent%20Environment&rft.jtitle=Journal%20of%20the%20atmospheric%20sciences&rft.au=Li,%20Xiang-Yu&rft.date=2020-01&rft.volume=77&rft.issue=1&rft.spage=337&rft.epage=353&rft.pages=337-353&rft.issn=0022-4928&rft.eissn=1520-0469&rft_id=info:doi/10.1175/JAS-D-19-0107.1&rft_dat=%3Cproquest_swepu%3E2392620060%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2392620060&rft_id=info:pmid/&rfr_iscdi=true |