Condensational and Collisional Growth of Cloud Droplets in a Turbulent Environment

We investigate the effect of turbulence on the combined condensational and collisional growth of cloud droplets by means of high-resolution direct numerical simulations of turbulence and a superparticle approximation for droplet dynamics and collisions. The droplets are subject to turbulence as well...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the atmospheric sciences 2020-01, Vol.77 (1), p.337-353
Hauptverfasser: Li, Xiang-Yu, Brandenburg, Axel, Svensson, Gunilla, Haugen, Nils E. L., Mehlig, Bernhard, Rogachevskii, Igor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 353
container_issue 1
container_start_page 337
container_title Journal of the atmospheric sciences
container_volume 77
creator Li, Xiang-Yu
Brandenburg, Axel
Svensson, Gunilla
Haugen, Nils E. L.
Mehlig, Bernhard
Rogachevskii, Igor
description We investigate the effect of turbulence on the combined condensational and collisional growth of cloud droplets by means of high-resolution direct numerical simulations of turbulence and a superparticle approximation for droplet dynamics and collisions. The droplets are subject to turbulence as well as gravity, and their collision and coalescence efficiencies are taken to be unity. We solve the thermodynamic equations governing temperature, water vapor mixing ratio, and the resulting supersaturation fields together with the Navier–Stokes equation. We find that the droplet size distribution broadens with increasing Reynolds number and/or mean energy dissipation rate. Turbulence affects the condensational growth directly through supersaturation fluctuations, and it influences collisional growth indirectly through condensation. Our simulations show for the first time that, in the absence of the mean updraft cooling, supersaturation-fluctuation-induced broadening of droplet size distributions enhances the collisional growth. This is contrary to classical (nonturbulent) condensational growth, which leads to a growing mean droplet size, but a narrower droplet size distribution. Our findings, instead, show that condensational growth facilitates collisional growth by broadening the size distribution in the tails at an early stage of rain formation. With increasing Reynolds numbers, evaporation becomes stronger. This counteracts the broadening effect due to condensation at late stages of rain formation. Our conclusions are consistent with results of laboratory experiments and field observations, and show that supersaturation fluctuations are important for precipitation.
doi_str_mv 10.1175/JAS-D-19-0107.1
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_proquest_journals_2392620060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2392620060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-de9b4164ea80de516cd90300f397e1eb051ab00a1bcf1446d590b7f20b91ec83</originalsourceid><addsrcrecordid>eNp9kT1v2zAQhomiAeImnbMSyFrGd5REiaMhp2kLAwESo-uBkihHiSyqpFgj_z4yXGRrbrkPPHiGexm7QrhBzLPlr9WjWAvUAhDyG_zEFphJEJAq_ZktAKQUqZbFOfsSwjPMJXNcsIfSDY0dgpk6N5iem6Hhpev7Lpz2O-8O0xN3LS97Fxu-9m7s7RR4N3DDt9FXsbfDxG-Hv513w36eL9lZa_pgv_7rF2z7_XZb_hCb-7uf5Woj6lQmk2isrlJUqTUFNDZDVTcaEoA20blFW0GGpgIwWNUtpqlqMg1V3kqoNNq6SC6YOGnDwY6xotF3e-NfyZmOdnGk-bSLFCzJQqcoZ_7bf_l193tFzu8oRMK8UJn6UP-Ov0xPJJXKkqP--sSP3v2JNkz07KKfXxhIJloqCaBgppYnqvYuBG_bdy8CHWOkOUZaE2o6xkiYvAHLvZEH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2392620060</pqid></control><display><type>article</type><title>Condensational and Collisional Growth of Cloud Droplets in a Turbulent Environment</title><source>American Meteorological Society</source><source>SWEPUB Freely available online</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Li, Xiang-Yu ; Brandenburg, Axel ; Svensson, Gunilla ; Haugen, Nils E. L. ; Mehlig, Bernhard ; Rogachevskii, Igor</creator><creatorcontrib>Li, Xiang-Yu ; Brandenburg, Axel ; Svensson, Gunilla ; Haugen, Nils E. L. ; Mehlig, Bernhard ; Rogachevskii, Igor</creatorcontrib><description>We investigate the effect of turbulence on the combined condensational and collisional growth of cloud droplets by means of high-resolution direct numerical simulations of turbulence and a superparticle approximation for droplet dynamics and collisions. The droplets are subject to turbulence as well as gravity, and their collision and coalescence efficiencies are taken to be unity. We solve the thermodynamic equations governing temperature, water vapor mixing ratio, and the resulting supersaturation fields together with the Navier–Stokes equation. We find that the droplet size distribution broadens with increasing Reynolds number and/or mean energy dissipation rate. Turbulence affects the condensational growth directly through supersaturation fluctuations, and it influences collisional growth indirectly through condensation. Our simulations show for the first time that, in the absence of the mean updraft cooling, supersaturation-fluctuation-induced broadening of droplet size distributions enhances the collisional growth. This is contrary to classical (nonturbulent) condensational growth, which leads to a growing mean droplet size, but a narrower droplet size distribution. Our findings, instead, show that condensational growth facilitates collisional growth by broadening the size distribution in the tails at an early stage of rain formation. With increasing Reynolds numbers, evaporation becomes stronger. This counteracts the broadening effect due to condensation at late stages of rain formation. Our conclusions are consistent with results of laboratory experiments and field observations, and show that supersaturation fluctuations are important for precipitation.</description><identifier>ISSN: 0022-4928</identifier><identifier>ISSN: 1520-0469</identifier><identifier>EISSN: 1520-0469</identifier><identifier>DOI: 10.1175/JAS-D-19-0107.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>aerosol-particles ; approach ; Approximation ; atmosfärvetenskap och oceanografi ; Atmospheric Sciences and Oceanography ; Cloud droplet collision ; Cloud droplet growth ; Cloud droplets ; Cloud microphysics ; Coalescence ; Coalescing ; Computational fluid dynamics ; Computer simulation ; Condensation ; Cooling ; Droplets ; drops ; Energy dissipation ; Energy exchange ; Evaporation ; flow ; Fluctuations ; Fluid flow ; Gravity ; heavy-particles ; Laboratory experiments ; Meteorologi och atmosfärforskning ; Meteorology &amp; Atmospheric Sciences ; Meteorology and Atmospheric Sciences ; microscopic ; Mixing ratio ; Navier-Stokes equations ; Numerical simulations ; numerical-simulation ; part ii ; Rain ; Rain formation ; Reynolds number ; Simulation ; Size distribution ; stochastic condensation ; Supersaturation ; Turbulence ; Water vapor ; Water vapour</subject><ispartof>Journal of the atmospheric sciences, 2020-01, Vol.77 (1), p.337-353</ispartof><rights>Copyright American Meteorological Society Jan 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-de9b4164ea80de516cd90300f397e1eb051ab00a1bcf1446d590b7f20b91ec83</citedby><cites>FETCH-LOGICAL-c423t-de9b4164ea80de516cd90300f397e1eb051ab00a1bcf1446d590b7f20b91ec83</cites><orcidid>0000-0002-5722-0018</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,552,780,784,885,3681,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-266532$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-178656$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://gup.ub.gu.se/publication/289412$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xiang-Yu</creatorcontrib><creatorcontrib>Brandenburg, Axel</creatorcontrib><creatorcontrib>Svensson, Gunilla</creatorcontrib><creatorcontrib>Haugen, Nils E. L.</creatorcontrib><creatorcontrib>Mehlig, Bernhard</creatorcontrib><creatorcontrib>Rogachevskii, Igor</creatorcontrib><title>Condensational and Collisional Growth of Cloud Droplets in a Turbulent Environment</title><title>Journal of the atmospheric sciences</title><description>We investigate the effect of turbulence on the combined condensational and collisional growth of cloud droplets by means of high-resolution direct numerical simulations of turbulence and a superparticle approximation for droplet dynamics and collisions. The droplets are subject to turbulence as well as gravity, and their collision and coalescence efficiencies are taken to be unity. We solve the thermodynamic equations governing temperature, water vapor mixing ratio, and the resulting supersaturation fields together with the Navier–Stokes equation. We find that the droplet size distribution broadens with increasing Reynolds number and/or mean energy dissipation rate. Turbulence affects the condensational growth directly through supersaturation fluctuations, and it influences collisional growth indirectly through condensation. Our simulations show for the first time that, in the absence of the mean updraft cooling, supersaturation-fluctuation-induced broadening of droplet size distributions enhances the collisional growth. This is contrary to classical (nonturbulent) condensational growth, which leads to a growing mean droplet size, but a narrower droplet size distribution. Our findings, instead, show that condensational growth facilitates collisional growth by broadening the size distribution in the tails at an early stage of rain formation. With increasing Reynolds numbers, evaporation becomes stronger. This counteracts the broadening effect due to condensation at late stages of rain formation. Our conclusions are consistent with results of laboratory experiments and field observations, and show that supersaturation fluctuations are important for precipitation.</description><subject>aerosol-particles</subject><subject>approach</subject><subject>Approximation</subject><subject>atmosfärvetenskap och oceanografi</subject><subject>Atmospheric Sciences and Oceanography</subject><subject>Cloud droplet collision</subject><subject>Cloud droplet growth</subject><subject>Cloud droplets</subject><subject>Cloud microphysics</subject><subject>Coalescence</subject><subject>Coalescing</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Condensation</subject><subject>Cooling</subject><subject>Droplets</subject><subject>drops</subject><subject>Energy dissipation</subject><subject>Energy exchange</subject><subject>Evaporation</subject><subject>flow</subject><subject>Fluctuations</subject><subject>Fluid flow</subject><subject>Gravity</subject><subject>heavy-particles</subject><subject>Laboratory experiments</subject><subject>Meteorologi och atmosfärforskning</subject><subject>Meteorology &amp; Atmospheric Sciences</subject><subject>Meteorology and Atmospheric Sciences</subject><subject>microscopic</subject><subject>Mixing ratio</subject><subject>Navier-Stokes equations</subject><subject>Numerical simulations</subject><subject>numerical-simulation</subject><subject>part ii</subject><subject>Rain</subject><subject>Rain formation</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>Size distribution</subject><subject>stochastic condensation</subject><subject>Supersaturation</subject><subject>Turbulence</subject><subject>Water vapor</subject><subject>Water vapour</subject><issn>0022-4928</issn><issn>1520-0469</issn><issn>1520-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>D8T</sourceid><recordid>eNp9kT1v2zAQhomiAeImnbMSyFrGd5REiaMhp2kLAwESo-uBkihHiSyqpFgj_z4yXGRrbrkPPHiGexm7QrhBzLPlr9WjWAvUAhDyG_zEFphJEJAq_ZktAKQUqZbFOfsSwjPMJXNcsIfSDY0dgpk6N5iem6Hhpev7Lpz2O-8O0xN3LS97Fxu-9m7s7RR4N3DDt9FXsbfDxG-Hv513w36eL9lZa_pgv_7rF2z7_XZb_hCb-7uf5Woj6lQmk2isrlJUqTUFNDZDVTcaEoA20blFW0GGpgIwWNUtpqlqMg1V3kqoNNq6SC6YOGnDwY6xotF3e-NfyZmOdnGk-bSLFCzJQqcoZ_7bf_l193tFzu8oRMK8UJn6UP-Ov0xPJJXKkqP--sSP3v2JNkz07KKfXxhIJloqCaBgppYnqvYuBG_bdy8CHWOkOUZaE2o6xkiYvAHLvZEH</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Li, Xiang-Yu</creator><creator>Brandenburg, Axel</creator><creator>Svensson, Gunilla</creator><creator>Haugen, Nils E. L.</creator><creator>Mehlig, Bernhard</creator><creator>Rogachevskii, Igor</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope><scope>DG7</scope><scope>F1U</scope><orcidid>https://orcid.org/0000-0002-5722-0018</orcidid></search><sort><creationdate>202001</creationdate><title>Condensational and Collisional Growth of Cloud Droplets in a Turbulent Environment</title><author>Li, Xiang-Yu ; Brandenburg, Axel ; Svensson, Gunilla ; Haugen, Nils E. L. ; Mehlig, Bernhard ; Rogachevskii, Igor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-de9b4164ea80de516cd90300f397e1eb051ab00a1bcf1446d590b7f20b91ec83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>aerosol-particles</topic><topic>approach</topic><topic>Approximation</topic><topic>atmosfärvetenskap och oceanografi</topic><topic>Atmospheric Sciences and Oceanography</topic><topic>Cloud droplet collision</topic><topic>Cloud droplet growth</topic><topic>Cloud droplets</topic><topic>Cloud microphysics</topic><topic>Coalescence</topic><topic>Coalescing</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Condensation</topic><topic>Cooling</topic><topic>Droplets</topic><topic>drops</topic><topic>Energy dissipation</topic><topic>Energy exchange</topic><topic>Evaporation</topic><topic>flow</topic><topic>Fluctuations</topic><topic>Fluid flow</topic><topic>Gravity</topic><topic>heavy-particles</topic><topic>Laboratory experiments</topic><topic>Meteorologi och atmosfärforskning</topic><topic>Meteorology &amp; Atmospheric Sciences</topic><topic>Meteorology and Atmospheric Sciences</topic><topic>microscopic</topic><topic>Mixing ratio</topic><topic>Navier-Stokes equations</topic><topic>Numerical simulations</topic><topic>numerical-simulation</topic><topic>part ii</topic><topic>Rain</topic><topic>Rain formation</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>Size distribution</topic><topic>stochastic condensation</topic><topic>Supersaturation</topic><topic>Turbulence</topic><topic>Water vapor</topic><topic>Water vapour</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiang-Yu</creatorcontrib><creatorcontrib>Brandenburg, Axel</creatorcontrib><creatorcontrib>Svensson, Gunilla</creatorcontrib><creatorcontrib>Haugen, Nils E. L.</creatorcontrib><creatorcontrib>Mehlig, Bernhard</creatorcontrib><creatorcontrib>Rogachevskii, Igor</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><collection>SWEPUB Stockholms universitet</collection><collection>SWEPUB Göteborgs universitet</collection><jtitle>Journal of the atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiang-Yu</au><au>Brandenburg, Axel</au><au>Svensson, Gunilla</au><au>Haugen, Nils E. L.</au><au>Mehlig, Bernhard</au><au>Rogachevskii, Igor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Condensational and Collisional Growth of Cloud Droplets in a Turbulent Environment</atitle><jtitle>Journal of the atmospheric sciences</jtitle><date>2020-01</date><risdate>2020</risdate><volume>77</volume><issue>1</issue><spage>337</spage><epage>353</epage><pages>337-353</pages><issn>0022-4928</issn><issn>1520-0469</issn><eissn>1520-0469</eissn><abstract>We investigate the effect of turbulence on the combined condensational and collisional growth of cloud droplets by means of high-resolution direct numerical simulations of turbulence and a superparticle approximation for droplet dynamics and collisions. The droplets are subject to turbulence as well as gravity, and their collision and coalescence efficiencies are taken to be unity. We solve the thermodynamic equations governing temperature, water vapor mixing ratio, and the resulting supersaturation fields together with the Navier–Stokes equation. We find that the droplet size distribution broadens with increasing Reynolds number and/or mean energy dissipation rate. Turbulence affects the condensational growth directly through supersaturation fluctuations, and it influences collisional growth indirectly through condensation. Our simulations show for the first time that, in the absence of the mean updraft cooling, supersaturation-fluctuation-induced broadening of droplet size distributions enhances the collisional growth. This is contrary to classical (nonturbulent) condensational growth, which leads to a growing mean droplet size, but a narrower droplet size distribution. Our findings, instead, show that condensational growth facilitates collisional growth by broadening the size distribution in the tails at an early stage of rain formation. With increasing Reynolds numbers, evaporation becomes stronger. This counteracts the broadening effect due to condensation at late stages of rain formation. Our conclusions are consistent with results of laboratory experiments and field observations, and show that supersaturation fluctuations are important for precipitation.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JAS-D-19-0107.1</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5722-0018</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-4928
ispartof Journal of the atmospheric sciences, 2020-01, Vol.77 (1), p.337-353
issn 0022-4928
1520-0469
1520-0469
language eng
recordid cdi_proquest_journals_2392620060
source American Meteorological Society; SWEPUB Freely available online; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects aerosol-particles
approach
Approximation
atmosfärvetenskap och oceanografi
Atmospheric Sciences and Oceanography
Cloud droplet collision
Cloud droplet growth
Cloud droplets
Cloud microphysics
Coalescence
Coalescing
Computational fluid dynamics
Computer simulation
Condensation
Cooling
Droplets
drops
Energy dissipation
Energy exchange
Evaporation
flow
Fluctuations
Fluid flow
Gravity
heavy-particles
Laboratory experiments
Meteorologi och atmosfärforskning
Meteorology & Atmospheric Sciences
Meteorology and Atmospheric Sciences
microscopic
Mixing ratio
Navier-Stokes equations
Numerical simulations
numerical-simulation
part ii
Rain
Rain formation
Reynolds number
Simulation
Size distribution
stochastic condensation
Supersaturation
Turbulence
Water vapor
Water vapour
title Condensational and Collisional Growth of Cloud Droplets in a Turbulent Environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A36%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Condensational%20and%20Collisional%20Growth%20of%20Cloud%20Droplets%20in%20a%20Turbulent%20Environment&rft.jtitle=Journal%20of%20the%20atmospheric%20sciences&rft.au=Li,%20Xiang-Yu&rft.date=2020-01&rft.volume=77&rft.issue=1&rft.spage=337&rft.epage=353&rft.pages=337-353&rft.issn=0022-4928&rft.eissn=1520-0469&rft_id=info:doi/10.1175/JAS-D-19-0107.1&rft_dat=%3Cproquest_swepu%3E2392620060%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2392620060&rft_id=info:pmid/&rfr_iscdi=true