Numerical Simulations of Two-Layer Flow past Topography. Part II: Lee Vortices

This study considers a two-layer fluid with constant density in each layer connected by a layer of continuously varying density for flows past topography in which hydraulic jumps with lee vortices are expected based on shallow-water theory. Numerical integrations of the Navier–Stokes equations at a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the atmospheric sciences 2020-03, Vol.77 (3), p.965-980
Hauptverfasser: Rotunno, Richard, Bryan, George H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 980
container_issue 3
container_start_page 965
container_title Journal of the atmospheric sciences
container_volume 77
creator Rotunno, Richard
Bryan, George H.
description This study considers a two-layer fluid with constant density in each layer connected by a layer of continuously varying density for flows past topography in which hydraulic jumps with lee vortices are expected based on shallow-water theory. Numerical integrations of the Navier–Stokes equations at a Reynolds number high enough for a direct numerical simulation of turbulent flow allow an examination of the internal mechanics of the turbulent leeside hydraulic jump and how this mechanics is related to lee vortices. Analysis of the statistically steady state shows that the original source of lee-vortex vertical vorticity is through the leeside descent of baroclinically produced spanwise vorticity associated with the hydraulic jump. This spanwise vorticity is tilted to the vertical at the spanwise extremities of the leeside hydraulic jump. Turbulent energy dissipation in flow through the hydraulic jump allows this leeside vertical vorticity to diffuse and extend downstream. The present simulations also suggest a geometrical interpretation of lee-vortex potential-vorticity creation, a concept central to interpretations of lee vortices based on the shallow-water equations.
doi_str_mv 10.1175/JAS-D-19-0142.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2392481031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2392481031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-12ca114056c175d38548cf49880cbb29efd2a8bad696daa32221afba3e9896d3</originalsourceid><addsrcrecordid>eNotkMFLwzAYxYMoOKdnrwHP2fIlaZd4G5vTSZnCiteQpql2dEtNWsb-ezvmuzx4PN738UPoEegEYJZM3-dbsiSgCAXBJnCFRpAwSqhI1TUaUcoYEYrJW3QX444OYjMYoc2m37tQW9Pgbb3vG9PV_hCxr3B-9CQzJxfwqvFH3JrY4dy3_juY9uc0wZ8mdHi9fsaZc_jLh662Lt6jm8o00T38-xjlq5d88Uayj9f1Yp4Ry3nSEWDWAAiapHZ4veQyEdJWQklJbVEw5aqSGVmYMlVpaQxnjIGpCsOdkkPCx-jpMtsG_9u72Omd78NhuKgZV0xIoByG1vTSssHHGFyl21DvTThpoPrMTA_M9FKD0mdmGvgfvqheIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2392481031</pqid></control><display><type>article</type><title>Numerical Simulations of Two-Layer Flow past Topography. Part II: Lee Vortices</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Rotunno, Richard ; Bryan, George H.</creator><creatorcontrib>Rotunno, Richard ; Bryan, George H.</creatorcontrib><description>This study considers a two-layer fluid with constant density in each layer connected by a layer of continuously varying density for flows past topography in which hydraulic jumps with lee vortices are expected based on shallow-water theory. Numerical integrations of the Navier–Stokes equations at a Reynolds number high enough for a direct numerical simulation of turbulent flow allow an examination of the internal mechanics of the turbulent leeside hydraulic jump and how this mechanics is related to lee vortices. Analysis of the statistically steady state shows that the original source of lee-vortex vertical vorticity is through the leeside descent of baroclinically produced spanwise vorticity associated with the hydraulic jump. This spanwise vorticity is tilted to the vertical at the spanwise extremities of the leeside hydraulic jump. Turbulent energy dissipation in flow through the hydraulic jump allows this leeside vertical vorticity to diffuse and extend downstream. The present simulations also suggest a geometrical interpretation of lee-vortex potential-vorticity creation, a concept central to interpretations of lee vortices based on the shallow-water equations.</description><identifier>ISSN: 0022-4928</identifier><identifier>EISSN: 1520-0469</identifier><identifier>DOI: 10.1175/JAS-D-19-0142.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Computational fluid dynamics ; Computer simulation ; Density ; Direct numerical simulation ; Eddy kinetic energy ; Energy dissipation ; Energy exchange ; Extremities ; Fluid flow ; Hydraulic jump ; Hydraulics ; Mathematical analysis ; Mathematical models ; Mechanics (physics) ; Navier-Stokes equations ; Numerical integration ; Numerical simulations ; Reynolds number ; Shallow water ; Shallow water equations ; Simulation ; Spectrum analysis ; Statistical analysis ; Topography ; Turbulent energy ; Turbulent flow ; Velocity ; Vertical vorticity ; Vortices ; Vorticity</subject><ispartof>Journal of the atmospheric sciences, 2020-03, Vol.77 (3), p.965-980</ispartof><rights>Copyright American Meteorological Society Mar 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-12ca114056c175d38548cf49880cbb29efd2a8bad696daa32221afba3e9896d3</citedby><cites>FETCH-LOGICAL-c335t-12ca114056c175d38548cf49880cbb29efd2a8bad696daa32221afba3e9896d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27901,27902</link.rule.ids></links><search><creatorcontrib>Rotunno, Richard</creatorcontrib><creatorcontrib>Bryan, George H.</creatorcontrib><title>Numerical Simulations of Two-Layer Flow past Topography. Part II: Lee Vortices</title><title>Journal of the atmospheric sciences</title><description>This study considers a two-layer fluid with constant density in each layer connected by a layer of continuously varying density for flows past topography in which hydraulic jumps with lee vortices are expected based on shallow-water theory. Numerical integrations of the Navier–Stokes equations at a Reynolds number high enough for a direct numerical simulation of turbulent flow allow an examination of the internal mechanics of the turbulent leeside hydraulic jump and how this mechanics is related to lee vortices. Analysis of the statistically steady state shows that the original source of lee-vortex vertical vorticity is through the leeside descent of baroclinically produced spanwise vorticity associated with the hydraulic jump. This spanwise vorticity is tilted to the vertical at the spanwise extremities of the leeside hydraulic jump. Turbulent energy dissipation in flow through the hydraulic jump allows this leeside vertical vorticity to diffuse and extend downstream. The present simulations also suggest a geometrical interpretation of lee-vortex potential-vorticity creation, a concept central to interpretations of lee vortices based on the shallow-water equations.</description><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Density</subject><subject>Direct numerical simulation</subject><subject>Eddy kinetic energy</subject><subject>Energy dissipation</subject><subject>Energy exchange</subject><subject>Extremities</subject><subject>Fluid flow</subject><subject>Hydraulic jump</subject><subject>Hydraulics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanics (physics)</subject><subject>Navier-Stokes equations</subject><subject>Numerical integration</subject><subject>Numerical simulations</subject><subject>Reynolds number</subject><subject>Shallow water</subject><subject>Shallow water equations</subject><subject>Simulation</subject><subject>Spectrum analysis</subject><subject>Statistical analysis</subject><subject>Topography</subject><subject>Turbulent energy</subject><subject>Turbulent flow</subject><subject>Velocity</subject><subject>Vertical vorticity</subject><subject>Vortices</subject><subject>Vorticity</subject><issn>0022-4928</issn><issn>1520-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkMFLwzAYxYMoOKdnrwHP2fIlaZd4G5vTSZnCiteQpql2dEtNWsb-ezvmuzx4PN738UPoEegEYJZM3-dbsiSgCAXBJnCFRpAwSqhI1TUaUcoYEYrJW3QX444OYjMYoc2m37tQW9Pgbb3vG9PV_hCxr3B-9CQzJxfwqvFH3JrY4dy3_juY9uc0wZ8mdHi9fsaZc_jLh662Lt6jm8o00T38-xjlq5d88Uayj9f1Yp4Ry3nSEWDWAAiapHZ4veQyEdJWQklJbVEw5aqSGVmYMlVpaQxnjIGpCsOdkkPCx-jpMtsG_9u72Omd78NhuKgZV0xIoByG1vTSssHHGFyl21DvTThpoPrMTA_M9FKD0mdmGvgfvqheIw</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Rotunno, Richard</creator><creator>Bryan, George H.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20200301</creationdate><title>Numerical Simulations of Two-Layer Flow past Topography. Part II: Lee Vortices</title><author>Rotunno, Richard ; Bryan, George H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-12ca114056c175d38548cf49880cbb29efd2a8bad696daa32221afba3e9896d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Density</topic><topic>Direct numerical simulation</topic><topic>Eddy kinetic energy</topic><topic>Energy dissipation</topic><topic>Energy exchange</topic><topic>Extremities</topic><topic>Fluid flow</topic><topic>Hydraulic jump</topic><topic>Hydraulics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanics (physics)</topic><topic>Navier-Stokes equations</topic><topic>Numerical integration</topic><topic>Numerical simulations</topic><topic>Reynolds number</topic><topic>Shallow water</topic><topic>Shallow water equations</topic><topic>Simulation</topic><topic>Spectrum analysis</topic><topic>Statistical analysis</topic><topic>Topography</topic><topic>Turbulent energy</topic><topic>Turbulent flow</topic><topic>Velocity</topic><topic>Vertical vorticity</topic><topic>Vortices</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rotunno, Richard</creatorcontrib><creatorcontrib>Bryan, George H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of the atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rotunno, Richard</au><au>Bryan, George H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulations of Two-Layer Flow past Topography. Part II: Lee Vortices</atitle><jtitle>Journal of the atmospheric sciences</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>77</volume><issue>3</issue><spage>965</spage><epage>980</epage><pages>965-980</pages><issn>0022-4928</issn><eissn>1520-0469</eissn><abstract>This study considers a two-layer fluid with constant density in each layer connected by a layer of continuously varying density for flows past topography in which hydraulic jumps with lee vortices are expected based on shallow-water theory. Numerical integrations of the Navier–Stokes equations at a Reynolds number high enough for a direct numerical simulation of turbulent flow allow an examination of the internal mechanics of the turbulent leeside hydraulic jump and how this mechanics is related to lee vortices. Analysis of the statistically steady state shows that the original source of lee-vortex vertical vorticity is through the leeside descent of baroclinically produced spanwise vorticity associated with the hydraulic jump. This spanwise vorticity is tilted to the vertical at the spanwise extremities of the leeside hydraulic jump. Turbulent energy dissipation in flow through the hydraulic jump allows this leeside vertical vorticity to diffuse and extend downstream. The present simulations also suggest a geometrical interpretation of lee-vortex potential-vorticity creation, a concept central to interpretations of lee vortices based on the shallow-water equations.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JAS-D-19-0142.1</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4928
ispartof Journal of the atmospheric sciences, 2020-03, Vol.77 (3), p.965-980
issn 0022-4928
1520-0469
language eng
recordid cdi_proquest_journals_2392481031
source American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Computational fluid dynamics
Computer simulation
Density
Direct numerical simulation
Eddy kinetic energy
Energy dissipation
Energy exchange
Extremities
Fluid flow
Hydraulic jump
Hydraulics
Mathematical analysis
Mathematical models
Mechanics (physics)
Navier-Stokes equations
Numerical integration
Numerical simulations
Reynolds number
Shallow water
Shallow water equations
Simulation
Spectrum analysis
Statistical analysis
Topography
Turbulent energy
Turbulent flow
Velocity
Vertical vorticity
Vortices
Vorticity
title Numerical Simulations of Two-Layer Flow past Topography. Part II: Lee Vortices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T05%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulations%20of%20Two-Layer%20Flow%20past%20Topography.%20Part%20II:%20Lee%20Vortices&rft.jtitle=Journal%20of%20the%20atmospheric%20sciences&rft.au=Rotunno,%20Richard&rft.date=2020-03-01&rft.volume=77&rft.issue=3&rft.spage=965&rft.epage=980&rft.pages=965-980&rft.issn=0022-4928&rft.eissn=1520-0469&rft_id=info:doi/10.1175/JAS-D-19-0142.1&rft_dat=%3Cproquest_cross%3E2392481031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2392481031&rft_id=info:pmid/&rfr_iscdi=true