Numerical Simulations of Two-Layer Flow past Topography. Part II: Lee Vortices
This study considers a two-layer fluid with constant density in each layer connected by a layer of continuously varying density for flows past topography in which hydraulic jumps with lee vortices are expected based on shallow-water theory. Numerical integrations of the Navier–Stokes equations at a...
Gespeichert in:
Veröffentlicht in: | Journal of the atmospheric sciences 2020-03, Vol.77 (3), p.965-980 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 980 |
---|---|
container_issue | 3 |
container_start_page | 965 |
container_title | Journal of the atmospheric sciences |
container_volume | 77 |
creator | Rotunno, Richard Bryan, George H. |
description | This study considers a two-layer fluid with constant density in each layer connected by a layer of continuously varying density for flows past topography in which hydraulic jumps with lee vortices are expected based on shallow-water theory. Numerical integrations of the Navier–Stokes equations at a Reynolds number high enough for a direct numerical simulation of turbulent flow allow an examination of the internal mechanics of the turbulent leeside hydraulic jump and how this mechanics is related to lee vortices. Analysis of the statistically steady state shows that the original source of lee-vortex vertical vorticity is through the leeside descent of baroclinically produced spanwise vorticity associated with the hydraulic jump. This spanwise vorticity is tilted to the vertical at the spanwise extremities of the leeside hydraulic jump. Turbulent energy dissipation in flow through the hydraulic jump allows this leeside vertical vorticity to diffuse and extend downstream. The present simulations also suggest a geometrical interpretation of lee-vortex potential-vorticity creation, a concept central to interpretations of lee vortices based on the shallow-water equations. |
doi_str_mv | 10.1175/JAS-D-19-0142.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2392481031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2392481031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-12ca114056c175d38548cf49880cbb29efd2a8bad696daa32221afba3e9896d3</originalsourceid><addsrcrecordid>eNotkMFLwzAYxYMoOKdnrwHP2fIlaZd4G5vTSZnCiteQpql2dEtNWsb-ezvmuzx4PN738UPoEegEYJZM3-dbsiSgCAXBJnCFRpAwSqhI1TUaUcoYEYrJW3QX444OYjMYoc2m37tQW9Pgbb3vG9PV_hCxr3B-9CQzJxfwqvFH3JrY4dy3_juY9uc0wZ8mdHi9fsaZc_jLh662Lt6jm8o00T38-xjlq5d88Uayj9f1Yp4Ry3nSEWDWAAiapHZ4veQyEdJWQklJbVEw5aqSGVmYMlVpaQxnjIGpCsOdkkPCx-jpMtsG_9u72Omd78NhuKgZV0xIoByG1vTSssHHGFyl21DvTThpoPrMTA_M9FKD0mdmGvgfvqheIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2392481031</pqid></control><display><type>article</type><title>Numerical Simulations of Two-Layer Flow past Topography. Part II: Lee Vortices</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Rotunno, Richard ; Bryan, George H.</creator><creatorcontrib>Rotunno, Richard ; Bryan, George H.</creatorcontrib><description>This study considers a two-layer fluid with constant density in each layer connected by a layer of continuously varying density for flows past topography in which hydraulic jumps with lee vortices are expected based on shallow-water theory. Numerical integrations of the Navier–Stokes equations at a Reynolds number high enough for a direct numerical simulation of turbulent flow allow an examination of the internal mechanics of the turbulent leeside hydraulic jump and how this mechanics is related to lee vortices. Analysis of the statistically steady state shows that the original source of lee-vortex vertical vorticity is through the leeside descent of baroclinically produced spanwise vorticity associated with the hydraulic jump. This spanwise vorticity is tilted to the vertical at the spanwise extremities of the leeside hydraulic jump. Turbulent energy dissipation in flow through the hydraulic jump allows this leeside vertical vorticity to diffuse and extend downstream. The present simulations also suggest a geometrical interpretation of lee-vortex potential-vorticity creation, a concept central to interpretations of lee vortices based on the shallow-water equations.</description><identifier>ISSN: 0022-4928</identifier><identifier>EISSN: 1520-0469</identifier><identifier>DOI: 10.1175/JAS-D-19-0142.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Computational fluid dynamics ; Computer simulation ; Density ; Direct numerical simulation ; Eddy kinetic energy ; Energy dissipation ; Energy exchange ; Extremities ; Fluid flow ; Hydraulic jump ; Hydraulics ; Mathematical analysis ; Mathematical models ; Mechanics (physics) ; Navier-Stokes equations ; Numerical integration ; Numerical simulations ; Reynolds number ; Shallow water ; Shallow water equations ; Simulation ; Spectrum analysis ; Statistical analysis ; Topography ; Turbulent energy ; Turbulent flow ; Velocity ; Vertical vorticity ; Vortices ; Vorticity</subject><ispartof>Journal of the atmospheric sciences, 2020-03, Vol.77 (3), p.965-980</ispartof><rights>Copyright American Meteorological Society Mar 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-12ca114056c175d38548cf49880cbb29efd2a8bad696daa32221afba3e9896d3</citedby><cites>FETCH-LOGICAL-c335t-12ca114056c175d38548cf49880cbb29efd2a8bad696daa32221afba3e9896d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27901,27902</link.rule.ids></links><search><creatorcontrib>Rotunno, Richard</creatorcontrib><creatorcontrib>Bryan, George H.</creatorcontrib><title>Numerical Simulations of Two-Layer Flow past Topography. Part II: Lee Vortices</title><title>Journal of the atmospheric sciences</title><description>This study considers a two-layer fluid with constant density in each layer connected by a layer of continuously varying density for flows past topography in which hydraulic jumps with lee vortices are expected based on shallow-water theory. Numerical integrations of the Navier–Stokes equations at a Reynolds number high enough for a direct numerical simulation of turbulent flow allow an examination of the internal mechanics of the turbulent leeside hydraulic jump and how this mechanics is related to lee vortices. Analysis of the statistically steady state shows that the original source of lee-vortex vertical vorticity is through the leeside descent of baroclinically produced spanwise vorticity associated with the hydraulic jump. This spanwise vorticity is tilted to the vertical at the spanwise extremities of the leeside hydraulic jump. Turbulent energy dissipation in flow through the hydraulic jump allows this leeside vertical vorticity to diffuse and extend downstream. The present simulations also suggest a geometrical interpretation of lee-vortex potential-vorticity creation, a concept central to interpretations of lee vortices based on the shallow-water equations.</description><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Density</subject><subject>Direct numerical simulation</subject><subject>Eddy kinetic energy</subject><subject>Energy dissipation</subject><subject>Energy exchange</subject><subject>Extremities</subject><subject>Fluid flow</subject><subject>Hydraulic jump</subject><subject>Hydraulics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanics (physics)</subject><subject>Navier-Stokes equations</subject><subject>Numerical integration</subject><subject>Numerical simulations</subject><subject>Reynolds number</subject><subject>Shallow water</subject><subject>Shallow water equations</subject><subject>Simulation</subject><subject>Spectrum analysis</subject><subject>Statistical analysis</subject><subject>Topography</subject><subject>Turbulent energy</subject><subject>Turbulent flow</subject><subject>Velocity</subject><subject>Vertical vorticity</subject><subject>Vortices</subject><subject>Vorticity</subject><issn>0022-4928</issn><issn>1520-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkMFLwzAYxYMoOKdnrwHP2fIlaZd4G5vTSZnCiteQpql2dEtNWsb-ezvmuzx4PN738UPoEegEYJZM3-dbsiSgCAXBJnCFRpAwSqhI1TUaUcoYEYrJW3QX444OYjMYoc2m37tQW9Pgbb3vG9PV_hCxr3B-9CQzJxfwqvFH3JrY4dy3_juY9uc0wZ8mdHi9fsaZc_jLh662Lt6jm8o00T38-xjlq5d88Uayj9f1Yp4Ry3nSEWDWAAiapHZ4veQyEdJWQklJbVEw5aqSGVmYMlVpaQxnjIGpCsOdkkPCx-jpMtsG_9u72Omd78NhuKgZV0xIoByG1vTSssHHGFyl21DvTThpoPrMTA_M9FKD0mdmGvgfvqheIw</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Rotunno, Richard</creator><creator>Bryan, George H.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20200301</creationdate><title>Numerical Simulations of Two-Layer Flow past Topography. Part II: Lee Vortices</title><author>Rotunno, Richard ; Bryan, George H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-12ca114056c175d38548cf49880cbb29efd2a8bad696daa32221afba3e9896d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Density</topic><topic>Direct numerical simulation</topic><topic>Eddy kinetic energy</topic><topic>Energy dissipation</topic><topic>Energy exchange</topic><topic>Extremities</topic><topic>Fluid flow</topic><topic>Hydraulic jump</topic><topic>Hydraulics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanics (physics)</topic><topic>Navier-Stokes equations</topic><topic>Numerical integration</topic><topic>Numerical simulations</topic><topic>Reynolds number</topic><topic>Shallow water</topic><topic>Shallow water equations</topic><topic>Simulation</topic><topic>Spectrum analysis</topic><topic>Statistical analysis</topic><topic>Topography</topic><topic>Turbulent energy</topic><topic>Turbulent flow</topic><topic>Velocity</topic><topic>Vertical vorticity</topic><topic>Vortices</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rotunno, Richard</creatorcontrib><creatorcontrib>Bryan, George H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of the atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rotunno, Richard</au><au>Bryan, George H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulations of Two-Layer Flow past Topography. Part II: Lee Vortices</atitle><jtitle>Journal of the atmospheric sciences</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>77</volume><issue>3</issue><spage>965</spage><epage>980</epage><pages>965-980</pages><issn>0022-4928</issn><eissn>1520-0469</eissn><abstract>This study considers a two-layer fluid with constant density in each layer connected by a layer of continuously varying density for flows past topography in which hydraulic jumps with lee vortices are expected based on shallow-water theory. Numerical integrations of the Navier–Stokes equations at a Reynolds number high enough for a direct numerical simulation of turbulent flow allow an examination of the internal mechanics of the turbulent leeside hydraulic jump and how this mechanics is related to lee vortices. Analysis of the statistically steady state shows that the original source of lee-vortex vertical vorticity is through the leeside descent of baroclinically produced spanwise vorticity associated with the hydraulic jump. This spanwise vorticity is tilted to the vertical at the spanwise extremities of the leeside hydraulic jump. Turbulent energy dissipation in flow through the hydraulic jump allows this leeside vertical vorticity to diffuse and extend downstream. The present simulations also suggest a geometrical interpretation of lee-vortex potential-vorticity creation, a concept central to interpretations of lee vortices based on the shallow-water equations.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JAS-D-19-0142.1</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4928 |
ispartof | Journal of the atmospheric sciences, 2020-03, Vol.77 (3), p.965-980 |
issn | 0022-4928 1520-0469 |
language | eng |
recordid | cdi_proquest_journals_2392481031 |
source | American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Computational fluid dynamics Computer simulation Density Direct numerical simulation Eddy kinetic energy Energy dissipation Energy exchange Extremities Fluid flow Hydraulic jump Hydraulics Mathematical analysis Mathematical models Mechanics (physics) Navier-Stokes equations Numerical integration Numerical simulations Reynolds number Shallow water Shallow water equations Simulation Spectrum analysis Statistical analysis Topography Turbulent energy Turbulent flow Velocity Vertical vorticity Vortices Vorticity |
title | Numerical Simulations of Two-Layer Flow past Topography. Part II: Lee Vortices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T05%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulations%20of%20Two-Layer%20Flow%20past%20Topography.%20Part%20II:%20Lee%20Vortices&rft.jtitle=Journal%20of%20the%20atmospheric%20sciences&rft.au=Rotunno,%20Richard&rft.date=2020-03-01&rft.volume=77&rft.issue=3&rft.spage=965&rft.epage=980&rft.pages=965-980&rft.issn=0022-4928&rft.eissn=1520-0469&rft_id=info:doi/10.1175/JAS-D-19-0142.1&rft_dat=%3Cproquest_cross%3E2392481031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2392481031&rft_id=info:pmid/&rfr_iscdi=true |