CHAOS IV: Gas-phase Abundance Trends from the First Four CHAOS Galaxies
The chemical abundances of spiral galaxies, as probed by H ii regions across their disks, are key to understanding the evolution of galaxies over a wide range of environments. We present Large Binocular Telescope/Multi-Object Double Spectrographs spectra of 52 H ii regions in NGC 3184 as part of the...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2020-04, Vol.893 (2), p.96 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 96 |
container_title | The Astrophysical journal |
container_volume | 893 |
creator | Berg, Danielle A. Pogge, Richard W. Skillman, Evan D. Croxall, Kevin V. Moustakas, John Rogers, Noah S. J. Sun, Jiayi |
description | The chemical abundances of spiral galaxies, as probed by H ii regions across their disks, are key to understanding the evolution of galaxies over a wide range of environments. We present Large Binocular Telescope/Multi-Object Double Spectrographs spectra of 52 H ii regions in NGC 3184 as part of the CHemical Abundances Of Spirals (CHAOS) project. We explore the direct-method gas-phase abundance trends for the first four CHAOS galaxies, using temperature measurements from one or more auroral-line detections in 190 individual H ii regions. We find that the dispersion in relationships is dependent on ionization, as characterized by , and so we recommend ionization-based temperature priorities for abundance calculations. We confirm our previous results that [N ii] and [S iii] provide the most robust measures of electron temperature in low-ionization zones, while [O iii] provides reliable electron temperatures in high-ionization nebula. We measure relative and absolute abundances for O, N, S, Ar, and Ne. The four CHAOS galaxies marginally conform with a universal O/H gradient, as found by empirical integral field unit studies when plotted relative to effective radius. However, after adjusting for vertical offsets, we find a tight universal N/O gradient of dex/Re with tot. = 0.08 for Rg/Re < 2.0, where N is dominated by secondary production. Despite this tight universal N/O gradient, the scatter in the N/O-O/H relationship is significant. Interestingly, the scatter is similar when N/O is plotted relative to O/H or S/H. The observable ionic states of S probe lower ionization and excitation energies than O, which might be more appropriate for characterizing abundances in metal-rich H ii regions. |
doi_str_mv | 10.3847/1538-4357/ab7eab |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2392361893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2392361893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-52d719ee2a7bc836d8e7ead35bf73fcee913bfdf45438873b114ab0137008e2d3</originalsourceid><addsrcrecordid>eNp1kMFLwzAUxoMoOKd3jwGv1iV9aZN6G8PVwWAHp3gLSfvCOra2Jh3of29LRU-eHu_xfd_7-BFyy9kDKCFnPAEVCUjkzFiJxp6Rye_pnEwYYyJKQb5fkqsQ9sMaZ9mE5Ivn-eaFrt4eaW5C1O5MQDq3p7o0dYF067EuA3W-OdJuh3RZ-dDRZXPydDTm5mA-KwzX5MKZQ8Cbnzklr8un7eI5Wm_y1WK-jgrB0y5K4lLyDDE20hYK0lJhX7aExDoJrkDMOFhXOpEIUEqC5VwYyzhIxhTGJUzJ3Zjb-ubjhKHT-75M3b_UMWQxpFxl0KvYqCp8E4JHp1tfHY3_0pzpAZce2OiBjR5x9Zb70VI17V_mv_JvsddqHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2392361893</pqid></control><display><type>article</type><title>CHAOS IV: Gas-phase Abundance Trends from the First Four CHAOS Galaxies</title><source>Institute of Physics Open Access Journal Titles</source><creator>Berg, Danielle A. ; Pogge, Richard W. ; Skillman, Evan D. ; Croxall, Kevin V. ; Moustakas, John ; Rogers, Noah S. J. ; Sun, Jiayi</creator><creatorcontrib>Berg, Danielle A. ; Pogge, Richard W. ; Skillman, Evan D. ; Croxall, Kevin V. ; Moustakas, John ; Rogers, Noah S. J. ; Sun, Jiayi</creatorcontrib><description>The chemical abundances of spiral galaxies, as probed by H ii regions across their disks, are key to understanding the evolution of galaxies over a wide range of environments. We present Large Binocular Telescope/Multi-Object Double Spectrographs spectra of 52 H ii regions in NGC 3184 as part of the CHemical Abundances Of Spirals (CHAOS) project. We explore the direct-method gas-phase abundance trends for the first four CHAOS galaxies, using temperature measurements from one or more auroral-line detections in 190 individual H ii regions. We find that the dispersion in relationships is dependent on ionization, as characterized by , and so we recommend ionization-based temperature priorities for abundance calculations. We confirm our previous results that [N ii] and [S iii] provide the most robust measures of electron temperature in low-ionization zones, while [O iii] provides reliable electron temperatures in high-ionization nebula. We measure relative and absolute abundances for O, N, S, Ar, and Ne. The four CHAOS galaxies marginally conform with a universal O/H gradient, as found by empirical integral field unit studies when plotted relative to effective radius. However, after adjusting for vertical offsets, we find a tight universal N/O gradient of dex/Re with tot. = 0.08 for Rg/Re < 2.0, where N is dominated by secondary production. Despite this tight universal N/O gradient, the scatter in the N/O-O/H relationship is significant. Interestingly, the scatter is similar when N/O is plotted relative to O/H or S/H. The observable ionic states of S probe lower ionization and excitation energies than O, which might be more appropriate for characterizing abundances in metal-rich H ii regions.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab7eab</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Abundance ; Astrophysics ; Chemical abundances ; Disks ; Electron energy ; Electron temperatures ; Galactic evolution ; Galaxy abundances ; Galaxy chemical evolution ; Galaxy evolution ; H II regions ; Interstellar abundances ; Interstellar medium ; Ionization ; Metallicity ; Nebulae ; Offsets ; Scattering ; Spectrographs ; Spiral galaxies ; Spirals ; Stars & galaxies ; Temperature ; Temperature measurement ; Trends</subject><ispartof>The Astrophysical journal, 2020-04, Vol.893 (2), p.96</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Apr 01, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-52d719ee2a7bc836d8e7ead35bf73fcee913bfdf45438873b114ab0137008e2d3</citedby><cites>FETCH-LOGICAL-c416t-52d719ee2a7bc836d8e7ead35bf73fcee913bfdf45438873b114ab0137008e2d3</cites><orcidid>0000-0003-1435-3053 ; 0000-0003-0605-8732 ; 0000-0002-5258-7224 ; 0000-0002-4153-053X ; 0000-0003-0378-4667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab7eab/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,38890,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab7eab$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Berg, Danielle A.</creatorcontrib><creatorcontrib>Pogge, Richard W.</creatorcontrib><creatorcontrib>Skillman, Evan D.</creatorcontrib><creatorcontrib>Croxall, Kevin V.</creatorcontrib><creatorcontrib>Moustakas, John</creatorcontrib><creatorcontrib>Rogers, Noah S. J.</creatorcontrib><creatorcontrib>Sun, Jiayi</creatorcontrib><title>CHAOS IV: Gas-phase Abundance Trends from the First Four CHAOS Galaxies</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>The chemical abundances of spiral galaxies, as probed by H ii regions across their disks, are key to understanding the evolution of galaxies over a wide range of environments. We present Large Binocular Telescope/Multi-Object Double Spectrographs spectra of 52 H ii regions in NGC 3184 as part of the CHemical Abundances Of Spirals (CHAOS) project. We explore the direct-method gas-phase abundance trends for the first four CHAOS galaxies, using temperature measurements from one or more auroral-line detections in 190 individual H ii regions. We find that the dispersion in relationships is dependent on ionization, as characterized by , and so we recommend ionization-based temperature priorities for abundance calculations. We confirm our previous results that [N ii] and [S iii] provide the most robust measures of electron temperature in low-ionization zones, while [O iii] provides reliable electron temperatures in high-ionization nebula. We measure relative and absolute abundances for O, N, S, Ar, and Ne. The four CHAOS galaxies marginally conform with a universal O/H gradient, as found by empirical integral field unit studies when plotted relative to effective radius. However, after adjusting for vertical offsets, we find a tight universal N/O gradient of dex/Re with tot. = 0.08 for Rg/Re < 2.0, where N is dominated by secondary production. Despite this tight universal N/O gradient, the scatter in the N/O-O/H relationship is significant. Interestingly, the scatter is similar when N/O is plotted relative to O/H or S/H. The observable ionic states of S probe lower ionization and excitation energies than O, which might be more appropriate for characterizing abundances in metal-rich H ii regions.</description><subject>Abundance</subject><subject>Astrophysics</subject><subject>Chemical abundances</subject><subject>Disks</subject><subject>Electron energy</subject><subject>Electron temperatures</subject><subject>Galactic evolution</subject><subject>Galaxy abundances</subject><subject>Galaxy chemical evolution</subject><subject>Galaxy evolution</subject><subject>H II regions</subject><subject>Interstellar abundances</subject><subject>Interstellar medium</subject><subject>Ionization</subject><subject>Metallicity</subject><subject>Nebulae</subject><subject>Offsets</subject><subject>Scattering</subject><subject>Spectrographs</subject><subject>Spiral galaxies</subject><subject>Spirals</subject><subject>Stars & galaxies</subject><subject>Temperature</subject><subject>Temperature measurement</subject><subject>Trends</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUxoMoOKd3jwGv1iV9aZN6G8PVwWAHp3gLSfvCOra2Jh3of29LRU-eHu_xfd_7-BFyy9kDKCFnPAEVCUjkzFiJxp6Rye_pnEwYYyJKQb5fkqsQ9sMaZ9mE5Ivn-eaFrt4eaW5C1O5MQDq3p7o0dYF067EuA3W-OdJuh3RZ-dDRZXPydDTm5mA-KwzX5MKZQ8Cbnzklr8un7eI5Wm_y1WK-jgrB0y5K4lLyDDE20hYK0lJhX7aExDoJrkDMOFhXOpEIUEqC5VwYyzhIxhTGJUzJ3Zjb-ubjhKHT-75M3b_UMWQxpFxl0KvYqCp8E4JHp1tfHY3_0pzpAZce2OiBjR5x9Zb70VI17V_mv_JvsddqHA</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Berg, Danielle A.</creator><creator>Pogge, Richard W.</creator><creator>Skillman, Evan D.</creator><creator>Croxall, Kevin V.</creator><creator>Moustakas, John</creator><creator>Rogers, Noah S. J.</creator><creator>Sun, Jiayi</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1435-3053</orcidid><orcidid>https://orcid.org/0000-0003-0605-8732</orcidid><orcidid>https://orcid.org/0000-0002-5258-7224</orcidid><orcidid>https://orcid.org/0000-0002-4153-053X</orcidid><orcidid>https://orcid.org/0000-0003-0378-4667</orcidid></search><sort><creationdate>20200401</creationdate><title>CHAOS IV: Gas-phase Abundance Trends from the First Four CHAOS Galaxies</title><author>Berg, Danielle A. ; Pogge, Richard W. ; Skillman, Evan D. ; Croxall, Kevin V. ; Moustakas, John ; Rogers, Noah S. J. ; Sun, Jiayi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-52d719ee2a7bc836d8e7ead35bf73fcee913bfdf45438873b114ab0137008e2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abundance</topic><topic>Astrophysics</topic><topic>Chemical abundances</topic><topic>Disks</topic><topic>Electron energy</topic><topic>Electron temperatures</topic><topic>Galactic evolution</topic><topic>Galaxy abundances</topic><topic>Galaxy chemical evolution</topic><topic>Galaxy evolution</topic><topic>H II regions</topic><topic>Interstellar abundances</topic><topic>Interstellar medium</topic><topic>Ionization</topic><topic>Metallicity</topic><topic>Nebulae</topic><topic>Offsets</topic><topic>Scattering</topic><topic>Spectrographs</topic><topic>Spiral galaxies</topic><topic>Spirals</topic><topic>Stars & galaxies</topic><topic>Temperature</topic><topic>Temperature measurement</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berg, Danielle A.</creatorcontrib><creatorcontrib>Pogge, Richard W.</creatorcontrib><creatorcontrib>Skillman, Evan D.</creatorcontrib><creatorcontrib>Croxall, Kevin V.</creatorcontrib><creatorcontrib>Moustakas, John</creatorcontrib><creatorcontrib>Rogers, Noah S. J.</creatorcontrib><creatorcontrib>Sun, Jiayi</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Berg, Danielle A.</au><au>Pogge, Richard W.</au><au>Skillman, Evan D.</au><au>Croxall, Kevin V.</au><au>Moustakas, John</au><au>Rogers, Noah S. J.</au><au>Sun, Jiayi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CHAOS IV: Gas-phase Abundance Trends from the First Four CHAOS Galaxies</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>893</volume><issue>2</issue><spage>96</spage><pages>96-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>The chemical abundances of spiral galaxies, as probed by H ii regions across their disks, are key to understanding the evolution of galaxies over a wide range of environments. We present Large Binocular Telescope/Multi-Object Double Spectrographs spectra of 52 H ii regions in NGC 3184 as part of the CHemical Abundances Of Spirals (CHAOS) project. We explore the direct-method gas-phase abundance trends for the first four CHAOS galaxies, using temperature measurements from one or more auroral-line detections in 190 individual H ii regions. We find that the dispersion in relationships is dependent on ionization, as characterized by , and so we recommend ionization-based temperature priorities for abundance calculations. We confirm our previous results that [N ii] and [S iii] provide the most robust measures of electron temperature in low-ionization zones, while [O iii] provides reliable electron temperatures in high-ionization nebula. We measure relative and absolute abundances for O, N, S, Ar, and Ne. The four CHAOS galaxies marginally conform with a universal O/H gradient, as found by empirical integral field unit studies when plotted relative to effective radius. However, after adjusting for vertical offsets, we find a tight universal N/O gradient of dex/Re with tot. = 0.08 for Rg/Re < 2.0, where N is dominated by secondary production. Despite this tight universal N/O gradient, the scatter in the N/O-O/H relationship is significant. Interestingly, the scatter is similar when N/O is plotted relative to O/H or S/H. The observable ionic states of S probe lower ionization and excitation energies than O, which might be more appropriate for characterizing abundances in metal-rich H ii regions.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab7eab</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0003-1435-3053</orcidid><orcidid>https://orcid.org/0000-0003-0605-8732</orcidid><orcidid>https://orcid.org/0000-0002-5258-7224</orcidid><orcidid>https://orcid.org/0000-0002-4153-053X</orcidid><orcidid>https://orcid.org/0000-0003-0378-4667</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2020-04, Vol.893 (2), p.96 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_2392361893 |
source | Institute of Physics Open Access Journal Titles |
subjects | Abundance Astrophysics Chemical abundances Disks Electron energy Electron temperatures Galactic evolution Galaxy abundances Galaxy chemical evolution Galaxy evolution H II regions Interstellar abundances Interstellar medium Ionization Metallicity Nebulae Offsets Scattering Spectrographs Spiral galaxies Spirals Stars & galaxies Temperature Temperature measurement Trends |
title | CHAOS IV: Gas-phase Abundance Trends from the First Four CHAOS Galaxies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A17%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CHAOS%20IV:%20Gas-phase%20Abundance%20Trends%20from%20the%20First%20Four%20CHAOS%20Galaxies&rft.jtitle=The%20Astrophysical%20journal&rft.au=Berg,%20Danielle%20A.&rft.date=2020-04-01&rft.volume=893&rft.issue=2&rft.spage=96&rft.pages=96-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab7eab&rft_dat=%3Cproquest_O3W%3E2392361893%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2392361893&rft_id=info:pmid/&rfr_iscdi=true |