Nonempirical (double‐hybrid) density functionals applied to atomic excitation energies: A systematic basis set investigation

We investigate here the lowest‐energy (spin‐conserving) excitation energies for the set of He‐Ne atoms, with the family of nonempirical PBE, PBE0, PBE0‐1/3, PBE0‐DH, PBE‐CIDH, PBE‐QIDH, and PBE0‐2 functionals, after employing a wide variety of basis sets systematically approaching the basis set limi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of quantum chemistry 2020-06, Vol.120 (11), p.n/a
Hauptverfasser: Hernández‐Martínez, Laura, Brémond, Eric, Pérez‐Jiménez, Angel J., San‐Fabián, Emilio, Adamo, Carlo, Sancho‐García, Juan C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page
container_title International journal of quantum chemistry
container_volume 120
creator Hernández‐Martínez, Laura
Brémond, Eric
Pérez‐Jiménez, Angel J.
San‐Fabián, Emilio
Adamo, Carlo
Sancho‐García, Juan C.
description We investigate here the lowest‐energy (spin‐conserving) excitation energies for the set of He‐Ne atoms, with the family of nonempirical PBE, PBE0, PBE0‐1/3, PBE0‐DH, PBE‐CIDH, PBE‐QIDH, and PBE0‐2 functionals, after employing a wide variety of basis sets systematically approaching the basis set limit: def2‐nVP(D), cc‐pVnZ, aug‐cc‐pVnZ, and d‐aug‐cc‐pVnZ. We find that an accuracy (ie, mean unsigned error) of 0.3 to 0.4 eV for time‐dependent density functional theory (DFT) atomic excitation energies can be robustly achieved with modern double‐hybrid methods, which are also stable with respect to the addition of a double set of diffuse functions, contrarily to hybrid versions, in agreement with recent findings employing sophisticated multiconfigurational DFT methods. Atomic excitation energies calculated by time‐dependent density functional theory demands highly accurate basis sets with diffuse functions, together with modern double‐hybrid density functionals, to be competitive with CASPT2/CASSCF and multiconfigurational pair‐density functional theory methods.
doi_str_mv 10.1002/qua.26193
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2392201543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2392201543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3323-bb96b7caefa4fb6f1acfac91b1f67abd90e8be4abef6a29ebcb361622ace89293</originalsourceid><addsrcrecordid>eNp1kM1Kw0AUhQdRsFYXvsGAG7tIOz9x0nFXin9QFMGCuzAzuVOnpEk6k6jZiI_gM_okpsatqwv3fPdczkHolJIxJYRNto0aM0El30MDSmQSxYI-76NBp5EoEWR6iI5CWBNCBBfJAH3clwVsKuedUTk-z8pG5_D9-fXSau-yEc6gCK5usW0KU7uyUHnAqqpyBxmuS6zqcuMMhnfjarXTMRTgVw7CJZ7h0IYaNt3eYK2CCzhAjV3xCqF2q1_8GB3YzhJO_uYQLa-vnua30eLh5m4-W0SGc8YjraXQiVFgVWy1sFQZq4ykmlqRKJ1JAlMNsdJghWIStNFcUMGYMjCVTPIhOut9K19um-5_ui4bv0uTMi4ZI_Qi5h016injyxA82LTybqN8m1KS7upNu3rT33o7dtKzby6H9n8wfVzO-osfEM2BxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2392201543</pqid></control><display><type>article</type><title>Nonempirical (double‐hybrid) density functionals applied to atomic excitation energies: A systematic basis set investigation</title><source>Access via Wiley Online Library</source><creator>Hernández‐Martínez, Laura ; Brémond, Eric ; Pérez‐Jiménez, Angel J. ; San‐Fabián, Emilio ; Adamo, Carlo ; Sancho‐García, Juan C.</creator><creatorcontrib>Hernández‐Martínez, Laura ; Brémond, Eric ; Pérez‐Jiménez, Angel J. ; San‐Fabián, Emilio ; Adamo, Carlo ; Sancho‐García, Juan C.</creatorcontrib><description>We investigate here the lowest‐energy (spin‐conserving) excitation energies for the set of He‐Ne atoms, with the family of nonempirical PBE, PBE0, PBE0‐1/3, PBE0‐DH, PBE‐CIDH, PBE‐QIDH, and PBE0‐2 functionals, after employing a wide variety of basis sets systematically approaching the basis set limit: def2‐nVP(D), cc‐pVnZ, aug‐cc‐pVnZ, and d‐aug‐cc‐pVnZ. We find that an accuracy (ie, mean unsigned error) of 0.3 to 0.4 eV for time‐dependent density functional theory (DFT) atomic excitation energies can be robustly achieved with modern double‐hybrid methods, which are also stable with respect to the addition of a double set of diffuse functions, contrarily to hybrid versions, in agreement with recent findings employing sophisticated multiconfigurational DFT methods. Atomic excitation energies calculated by time‐dependent density functional theory demands highly accurate basis sets with diffuse functions, together with modern double‐hybrid density functionals, to be competitive with CASPT2/CASSCF and multiconfigurational pair‐density functional theory methods.</description><identifier>ISSN: 0020-7608</identifier><identifier>EISSN: 1097-461X</identifier><identifier>DOI: 10.1002/qua.26193</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>atomic excitation energies ; Atomic excitations ; Chemistry ; Density functional theory ; diffuse basis functions ; double‐hybrid density functionals ; Physical chemistry ; Quantum physics ; Time dependence</subject><ispartof>International journal of quantum chemistry, 2020-06, Vol.120 (11), p.n/a</ispartof><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3323-bb96b7caefa4fb6f1acfac91b1f67abd90e8be4abef6a29ebcb361622ace89293</citedby><cites>FETCH-LOGICAL-c3323-bb96b7caefa4fb6f1acfac91b1f67abd90e8be4abef6a29ebcb361622ace89293</cites><orcidid>0000-0002-2638-2735 ; 0000-0003-3867-1697</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqua.26193$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqua.26193$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Hernández‐Martínez, Laura</creatorcontrib><creatorcontrib>Brémond, Eric</creatorcontrib><creatorcontrib>Pérez‐Jiménez, Angel J.</creatorcontrib><creatorcontrib>San‐Fabián, Emilio</creatorcontrib><creatorcontrib>Adamo, Carlo</creatorcontrib><creatorcontrib>Sancho‐García, Juan C.</creatorcontrib><title>Nonempirical (double‐hybrid) density functionals applied to atomic excitation energies: A systematic basis set investigation</title><title>International journal of quantum chemistry</title><description>We investigate here the lowest‐energy (spin‐conserving) excitation energies for the set of He‐Ne atoms, with the family of nonempirical PBE, PBE0, PBE0‐1/3, PBE0‐DH, PBE‐CIDH, PBE‐QIDH, and PBE0‐2 functionals, after employing a wide variety of basis sets systematically approaching the basis set limit: def2‐nVP(D), cc‐pVnZ, aug‐cc‐pVnZ, and d‐aug‐cc‐pVnZ. We find that an accuracy (ie, mean unsigned error) of 0.3 to 0.4 eV for time‐dependent density functional theory (DFT) atomic excitation energies can be robustly achieved with modern double‐hybrid methods, which are also stable with respect to the addition of a double set of diffuse functions, contrarily to hybrid versions, in agreement with recent findings employing sophisticated multiconfigurational DFT methods. Atomic excitation energies calculated by time‐dependent density functional theory demands highly accurate basis sets with diffuse functions, together with modern double‐hybrid density functionals, to be competitive with CASPT2/CASSCF and multiconfigurational pair‐density functional theory methods.</description><subject>atomic excitation energies</subject><subject>Atomic excitations</subject><subject>Chemistry</subject><subject>Density functional theory</subject><subject>diffuse basis functions</subject><subject>double‐hybrid density functionals</subject><subject>Physical chemistry</subject><subject>Quantum physics</subject><subject>Time dependence</subject><issn>0020-7608</issn><issn>1097-461X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AUhQdRsFYXvsGAG7tIOz9x0nFXin9QFMGCuzAzuVOnpEk6k6jZiI_gM_okpsatqwv3fPdczkHolJIxJYRNto0aM0El30MDSmQSxYI-76NBp5EoEWR6iI5CWBNCBBfJAH3clwVsKuedUTk-z8pG5_D9-fXSau-yEc6gCK5usW0KU7uyUHnAqqpyBxmuS6zqcuMMhnfjarXTMRTgVw7CJZ7h0IYaNt3eYK2CCzhAjV3xCqF2q1_8GB3YzhJO_uYQLa-vnua30eLh5m4-W0SGc8YjraXQiVFgVWy1sFQZq4ykmlqRKJ1JAlMNsdJghWIStNFcUMGYMjCVTPIhOut9K19um-5_ui4bv0uTMi4ZI_Qi5h016injyxA82LTybqN8m1KS7upNu3rT33o7dtKzby6H9n8wfVzO-osfEM2BxA</recordid><startdate>20200605</startdate><enddate>20200605</enddate><creator>Hernández‐Martínez, Laura</creator><creator>Brémond, Eric</creator><creator>Pérez‐Jiménez, Angel J.</creator><creator>San‐Fabián, Emilio</creator><creator>Adamo, Carlo</creator><creator>Sancho‐García, Juan C.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2638-2735</orcidid><orcidid>https://orcid.org/0000-0003-3867-1697</orcidid></search><sort><creationdate>20200605</creationdate><title>Nonempirical (double‐hybrid) density functionals applied to atomic excitation energies: A systematic basis set investigation</title><author>Hernández‐Martínez, Laura ; Brémond, Eric ; Pérez‐Jiménez, Angel J. ; San‐Fabián, Emilio ; Adamo, Carlo ; Sancho‐García, Juan C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3323-bb96b7caefa4fb6f1acfac91b1f67abd90e8be4abef6a29ebcb361622ace89293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>atomic excitation energies</topic><topic>Atomic excitations</topic><topic>Chemistry</topic><topic>Density functional theory</topic><topic>diffuse basis functions</topic><topic>double‐hybrid density functionals</topic><topic>Physical chemistry</topic><topic>Quantum physics</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernández‐Martínez, Laura</creatorcontrib><creatorcontrib>Brémond, Eric</creatorcontrib><creatorcontrib>Pérez‐Jiménez, Angel J.</creatorcontrib><creatorcontrib>San‐Fabián, Emilio</creatorcontrib><creatorcontrib>Adamo, Carlo</creatorcontrib><creatorcontrib>Sancho‐García, Juan C.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of quantum chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernández‐Martínez, Laura</au><au>Brémond, Eric</au><au>Pérez‐Jiménez, Angel J.</au><au>San‐Fabián, Emilio</au><au>Adamo, Carlo</au><au>Sancho‐García, Juan C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonempirical (double‐hybrid) density functionals applied to atomic excitation energies: A systematic basis set investigation</atitle><jtitle>International journal of quantum chemistry</jtitle><date>2020-06-05</date><risdate>2020</risdate><volume>120</volume><issue>11</issue><epage>n/a</epage><issn>0020-7608</issn><eissn>1097-461X</eissn><abstract>We investigate here the lowest‐energy (spin‐conserving) excitation energies for the set of He‐Ne atoms, with the family of nonempirical PBE, PBE0, PBE0‐1/3, PBE0‐DH, PBE‐CIDH, PBE‐QIDH, and PBE0‐2 functionals, after employing a wide variety of basis sets systematically approaching the basis set limit: def2‐nVP(D), cc‐pVnZ, aug‐cc‐pVnZ, and d‐aug‐cc‐pVnZ. We find that an accuracy (ie, mean unsigned error) of 0.3 to 0.4 eV for time‐dependent density functional theory (DFT) atomic excitation energies can be robustly achieved with modern double‐hybrid methods, which are also stable with respect to the addition of a double set of diffuse functions, contrarily to hybrid versions, in agreement with recent findings employing sophisticated multiconfigurational DFT methods. Atomic excitation energies calculated by time‐dependent density functional theory demands highly accurate basis sets with diffuse functions, together with modern double‐hybrid density functionals, to be competitive with CASPT2/CASSCF and multiconfigurational pair‐density functional theory methods.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/qua.26193</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2638-2735</orcidid><orcidid>https://orcid.org/0000-0003-3867-1697</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7608
ispartof International journal of quantum chemistry, 2020-06, Vol.120 (11), p.n/a
issn 0020-7608
1097-461X
language eng
recordid cdi_proquest_journals_2392201543
source Access via Wiley Online Library
subjects atomic excitation energies
Atomic excitations
Chemistry
Density functional theory
diffuse basis functions
double‐hybrid density functionals
Physical chemistry
Quantum physics
Time dependence
title Nonempirical (double‐hybrid) density functionals applied to atomic excitation energies: A systematic basis set investigation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T09%3A15%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonempirical%20(double%E2%80%90hybrid)%20density%20functionals%20applied%20to%20atomic%20excitation%20energies:%20A%20systematic%20basis%20set%20investigation&rft.jtitle=International%20journal%20of%20quantum%20chemistry&rft.au=Hern%C3%A1ndez%E2%80%90Mart%C3%ADnez,%20Laura&rft.date=2020-06-05&rft.volume=120&rft.issue=11&rft.epage=n/a&rft.issn=0020-7608&rft.eissn=1097-461X&rft_id=info:doi/10.1002/qua.26193&rft_dat=%3Cproquest_cross%3E2392201543%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2392201543&rft_id=info:pmid/&rfr_iscdi=true