Nonempirical (double‐hybrid) density functionals applied to atomic excitation energies: A systematic basis set investigation
We investigate here the lowest‐energy (spin‐conserving) excitation energies for the set of He‐Ne atoms, with the family of nonempirical PBE, PBE0, PBE0‐1/3, PBE0‐DH, PBE‐CIDH, PBE‐QIDH, and PBE0‐2 functionals, after employing a wide variety of basis sets systematically approaching the basis set limi...
Gespeichert in:
Veröffentlicht in: | International journal of quantum chemistry 2020-06, Vol.120 (11), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 11 |
container_start_page | |
container_title | International journal of quantum chemistry |
container_volume | 120 |
creator | Hernández‐Martínez, Laura Brémond, Eric Pérez‐Jiménez, Angel J. San‐Fabián, Emilio Adamo, Carlo Sancho‐García, Juan C. |
description | We investigate here the lowest‐energy (spin‐conserving) excitation energies for the set of He‐Ne atoms, with the family of nonempirical PBE, PBE0, PBE0‐1/3, PBE0‐DH, PBE‐CIDH, PBE‐QIDH, and PBE0‐2 functionals, after employing a wide variety of basis sets systematically approaching the basis set limit: def2‐nVP(D), cc‐pVnZ, aug‐cc‐pVnZ, and d‐aug‐cc‐pVnZ. We find that an accuracy (ie, mean unsigned error) of 0.3 to 0.4 eV for time‐dependent density functional theory (DFT) atomic excitation energies can be robustly achieved with modern double‐hybrid methods, which are also stable with respect to the addition of a double set of diffuse functions, contrarily to hybrid versions, in agreement with recent findings employing sophisticated multiconfigurational DFT methods.
Atomic excitation energies calculated by time‐dependent density functional theory demands highly accurate basis sets with diffuse functions, together with modern double‐hybrid density functionals, to be competitive with CASPT2/CASSCF and multiconfigurational pair‐density functional theory methods. |
doi_str_mv | 10.1002/qua.26193 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2392201543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2392201543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3323-bb96b7caefa4fb6f1acfac91b1f67abd90e8be4abef6a29ebcb361622ace89293</originalsourceid><addsrcrecordid>eNp1kM1Kw0AUhQdRsFYXvsGAG7tIOz9x0nFXin9QFMGCuzAzuVOnpEk6k6jZiI_gM_okpsatqwv3fPdczkHolJIxJYRNto0aM0El30MDSmQSxYI-76NBp5EoEWR6iI5CWBNCBBfJAH3clwVsKuedUTk-z8pG5_D9-fXSau-yEc6gCK5usW0KU7uyUHnAqqpyBxmuS6zqcuMMhnfjarXTMRTgVw7CJZ7h0IYaNt3eYK2CCzhAjV3xCqF2q1_8GB3YzhJO_uYQLa-vnua30eLh5m4-W0SGc8YjraXQiVFgVWy1sFQZq4ykmlqRKJ1JAlMNsdJghWIStNFcUMGYMjCVTPIhOut9K19um-5_ui4bv0uTMi4ZI_Qi5h016injyxA82LTybqN8m1KS7upNu3rT33o7dtKzby6H9n8wfVzO-osfEM2BxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2392201543</pqid></control><display><type>article</type><title>Nonempirical (double‐hybrid) density functionals applied to atomic excitation energies: A systematic basis set investigation</title><source>Access via Wiley Online Library</source><creator>Hernández‐Martínez, Laura ; Brémond, Eric ; Pérez‐Jiménez, Angel J. ; San‐Fabián, Emilio ; Adamo, Carlo ; Sancho‐García, Juan C.</creator><creatorcontrib>Hernández‐Martínez, Laura ; Brémond, Eric ; Pérez‐Jiménez, Angel J. ; San‐Fabián, Emilio ; Adamo, Carlo ; Sancho‐García, Juan C.</creatorcontrib><description>We investigate here the lowest‐energy (spin‐conserving) excitation energies for the set of He‐Ne atoms, with the family of nonempirical PBE, PBE0, PBE0‐1/3, PBE0‐DH, PBE‐CIDH, PBE‐QIDH, and PBE0‐2 functionals, after employing a wide variety of basis sets systematically approaching the basis set limit: def2‐nVP(D), cc‐pVnZ, aug‐cc‐pVnZ, and d‐aug‐cc‐pVnZ. We find that an accuracy (ie, mean unsigned error) of 0.3 to 0.4 eV for time‐dependent density functional theory (DFT) atomic excitation energies can be robustly achieved with modern double‐hybrid methods, which are also stable with respect to the addition of a double set of diffuse functions, contrarily to hybrid versions, in agreement with recent findings employing sophisticated multiconfigurational DFT methods.
Atomic excitation energies calculated by time‐dependent density functional theory demands highly accurate basis sets with diffuse functions, together with modern double‐hybrid density functionals, to be competitive with CASPT2/CASSCF and multiconfigurational pair‐density functional theory methods.</description><identifier>ISSN: 0020-7608</identifier><identifier>EISSN: 1097-461X</identifier><identifier>DOI: 10.1002/qua.26193</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>atomic excitation energies ; Atomic excitations ; Chemistry ; Density functional theory ; diffuse basis functions ; double‐hybrid density functionals ; Physical chemistry ; Quantum physics ; Time dependence</subject><ispartof>International journal of quantum chemistry, 2020-06, Vol.120 (11), p.n/a</ispartof><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3323-bb96b7caefa4fb6f1acfac91b1f67abd90e8be4abef6a29ebcb361622ace89293</citedby><cites>FETCH-LOGICAL-c3323-bb96b7caefa4fb6f1acfac91b1f67abd90e8be4abef6a29ebcb361622ace89293</cites><orcidid>0000-0002-2638-2735 ; 0000-0003-3867-1697</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqua.26193$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqua.26193$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Hernández‐Martínez, Laura</creatorcontrib><creatorcontrib>Brémond, Eric</creatorcontrib><creatorcontrib>Pérez‐Jiménez, Angel J.</creatorcontrib><creatorcontrib>San‐Fabián, Emilio</creatorcontrib><creatorcontrib>Adamo, Carlo</creatorcontrib><creatorcontrib>Sancho‐García, Juan C.</creatorcontrib><title>Nonempirical (double‐hybrid) density functionals applied to atomic excitation energies: A systematic basis set investigation</title><title>International journal of quantum chemistry</title><description>We investigate here the lowest‐energy (spin‐conserving) excitation energies for the set of He‐Ne atoms, with the family of nonempirical PBE, PBE0, PBE0‐1/3, PBE0‐DH, PBE‐CIDH, PBE‐QIDH, and PBE0‐2 functionals, after employing a wide variety of basis sets systematically approaching the basis set limit: def2‐nVP(D), cc‐pVnZ, aug‐cc‐pVnZ, and d‐aug‐cc‐pVnZ. We find that an accuracy (ie, mean unsigned error) of 0.3 to 0.4 eV for time‐dependent density functional theory (DFT) atomic excitation energies can be robustly achieved with modern double‐hybrid methods, which are also stable with respect to the addition of a double set of diffuse functions, contrarily to hybrid versions, in agreement with recent findings employing sophisticated multiconfigurational DFT methods.
Atomic excitation energies calculated by time‐dependent density functional theory demands highly accurate basis sets with diffuse functions, together with modern double‐hybrid density functionals, to be competitive with CASPT2/CASSCF and multiconfigurational pair‐density functional theory methods.</description><subject>atomic excitation energies</subject><subject>Atomic excitations</subject><subject>Chemistry</subject><subject>Density functional theory</subject><subject>diffuse basis functions</subject><subject>double‐hybrid density functionals</subject><subject>Physical chemistry</subject><subject>Quantum physics</subject><subject>Time dependence</subject><issn>0020-7608</issn><issn>1097-461X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AUhQdRsFYXvsGAG7tIOz9x0nFXin9QFMGCuzAzuVOnpEk6k6jZiI_gM_okpsatqwv3fPdczkHolJIxJYRNto0aM0El30MDSmQSxYI-76NBp5EoEWR6iI5CWBNCBBfJAH3clwVsKuedUTk-z8pG5_D9-fXSau-yEc6gCK5usW0KU7uyUHnAqqpyBxmuS6zqcuMMhnfjarXTMRTgVw7CJZ7h0IYaNt3eYK2CCzhAjV3xCqF2q1_8GB3YzhJO_uYQLa-vnua30eLh5m4-W0SGc8YjraXQiVFgVWy1sFQZq4ykmlqRKJ1JAlMNsdJghWIStNFcUMGYMjCVTPIhOut9K19um-5_ui4bv0uTMi4ZI_Qi5h016injyxA82LTybqN8m1KS7upNu3rT33o7dtKzby6H9n8wfVzO-osfEM2BxA</recordid><startdate>20200605</startdate><enddate>20200605</enddate><creator>Hernández‐Martínez, Laura</creator><creator>Brémond, Eric</creator><creator>Pérez‐Jiménez, Angel J.</creator><creator>San‐Fabián, Emilio</creator><creator>Adamo, Carlo</creator><creator>Sancho‐García, Juan C.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2638-2735</orcidid><orcidid>https://orcid.org/0000-0003-3867-1697</orcidid></search><sort><creationdate>20200605</creationdate><title>Nonempirical (double‐hybrid) density functionals applied to atomic excitation energies: A systematic basis set investigation</title><author>Hernández‐Martínez, Laura ; Brémond, Eric ; Pérez‐Jiménez, Angel J. ; San‐Fabián, Emilio ; Adamo, Carlo ; Sancho‐García, Juan C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3323-bb96b7caefa4fb6f1acfac91b1f67abd90e8be4abef6a29ebcb361622ace89293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>atomic excitation energies</topic><topic>Atomic excitations</topic><topic>Chemistry</topic><topic>Density functional theory</topic><topic>diffuse basis functions</topic><topic>double‐hybrid density functionals</topic><topic>Physical chemistry</topic><topic>Quantum physics</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernández‐Martínez, Laura</creatorcontrib><creatorcontrib>Brémond, Eric</creatorcontrib><creatorcontrib>Pérez‐Jiménez, Angel J.</creatorcontrib><creatorcontrib>San‐Fabián, Emilio</creatorcontrib><creatorcontrib>Adamo, Carlo</creatorcontrib><creatorcontrib>Sancho‐García, Juan C.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of quantum chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernández‐Martínez, Laura</au><au>Brémond, Eric</au><au>Pérez‐Jiménez, Angel J.</au><au>San‐Fabián, Emilio</au><au>Adamo, Carlo</au><au>Sancho‐García, Juan C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonempirical (double‐hybrid) density functionals applied to atomic excitation energies: A systematic basis set investigation</atitle><jtitle>International journal of quantum chemistry</jtitle><date>2020-06-05</date><risdate>2020</risdate><volume>120</volume><issue>11</issue><epage>n/a</epage><issn>0020-7608</issn><eissn>1097-461X</eissn><abstract>We investigate here the lowest‐energy (spin‐conserving) excitation energies for the set of He‐Ne atoms, with the family of nonempirical PBE, PBE0, PBE0‐1/3, PBE0‐DH, PBE‐CIDH, PBE‐QIDH, and PBE0‐2 functionals, after employing a wide variety of basis sets systematically approaching the basis set limit: def2‐nVP(D), cc‐pVnZ, aug‐cc‐pVnZ, and d‐aug‐cc‐pVnZ. We find that an accuracy (ie, mean unsigned error) of 0.3 to 0.4 eV for time‐dependent density functional theory (DFT) atomic excitation energies can be robustly achieved with modern double‐hybrid methods, which are also stable with respect to the addition of a double set of diffuse functions, contrarily to hybrid versions, in agreement with recent findings employing sophisticated multiconfigurational DFT methods.
Atomic excitation energies calculated by time‐dependent density functional theory demands highly accurate basis sets with diffuse functions, together with modern double‐hybrid density functionals, to be competitive with CASPT2/CASSCF and multiconfigurational pair‐density functional theory methods.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/qua.26193</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2638-2735</orcidid><orcidid>https://orcid.org/0000-0003-3867-1697</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7608 |
ispartof | International journal of quantum chemistry, 2020-06, Vol.120 (11), p.n/a |
issn | 0020-7608 1097-461X |
language | eng |
recordid | cdi_proquest_journals_2392201543 |
source | Access via Wiley Online Library |
subjects | atomic excitation energies Atomic excitations Chemistry Density functional theory diffuse basis functions double‐hybrid density functionals Physical chemistry Quantum physics Time dependence |
title | Nonempirical (double‐hybrid) density functionals applied to atomic excitation energies: A systematic basis set investigation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T09%3A15%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonempirical%20(double%E2%80%90hybrid)%20density%20functionals%20applied%20to%20atomic%20excitation%20energies:%20A%20systematic%20basis%20set%20investigation&rft.jtitle=International%20journal%20of%20quantum%20chemistry&rft.au=Hern%C3%A1ndez%E2%80%90Mart%C3%ADnez,%20Laura&rft.date=2020-06-05&rft.volume=120&rft.issue=11&rft.epage=n/a&rft.issn=0020-7608&rft.eissn=1097-461X&rft_id=info:doi/10.1002/qua.26193&rft_dat=%3Cproquest_cross%3E2392201543%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2392201543&rft_id=info:pmid/&rfr_iscdi=true |