On the Maximum ABC Spectral Radius of Connected Graphs and Trees
Let \(G=(V,E)\) be a connected graph, where \(V=\{v_1, v_2, \cdots, v_n\}\) and \(m=|E|\). \(d_i\) will denote the degree of vertex \(v_i\) of \(G\), and \(\Delta=\max_{1\leq i \leq n} d_i\). The ABC matrix of \(G\) is defined as \(M(G)=(m_{ij})_{n \times n}\), where \(m_{ij}=\sqrt{(d_i + d_j -2)/(d...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-04 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lin, Wenshui Zheng, Yiming Fu, Peifang Yan, Zhangyong Jia-Bao, Liu |
description | Let \(G=(V,E)\) be a connected graph, where \(V=\{v_1, v_2, \cdots, v_n\}\) and \(m=|E|\). \(d_i\) will denote the degree of vertex \(v_i\) of \(G\), and \(\Delta=\max_{1\leq i \leq n} d_i\). The ABC matrix of \(G\) is defined as \(M(G)=(m_{ij})_{n \times n}\), where \(m_{ij}=\sqrt{(d_i + d_j -2)/(d_i d_j)}\) if \(v_i v_j \in E\), and 0 otherwise. The largest eigenvalue of \(M(G)\) is called the ABC spectral radius of \(G\), denoted by \(\rho_{ABC}(G)\). Recently, this graph invariant has attracted some attentions. We prove that \(\rho_{ABC}(G) \leq \sqrt{\Delta+(2m-n+1)/\Delta -2}\). As an application, the unique tree with \(n \geq 4\) vertices having second largest ABC spectral radius is determined. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2392128565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2392128565</sourcerecordid><originalsourceid>FETCH-proquest_journals_23921285653</originalsourceid><addsrcrecordid>eNqNissKgkAUQIcgSMp_uNBa0DuN2a6SHpsIyr0MeUVFZ6YZB_r8XPQBrQ6cc2YsQM6TKNsgLljoXBfHMaZbFIIHbH9XMDYEN_lpBz_A4ZjD09BrtLKHh6xa70DXkGulJkkVXKw0jQOpKigskVuxeS17R-GPS7Y-n4r8Ghmr357cWHbaWzWlEvkOE8xEKvh_1xd-JTem</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2392128565</pqid></control><display><type>article</type><title>On the Maximum ABC Spectral Radius of Connected Graphs and Trees</title><source>Free E- Journals</source><creator>Lin, Wenshui ; Zheng, Yiming ; Fu, Peifang ; Yan, Zhangyong ; Jia-Bao, Liu</creator><creatorcontrib>Lin, Wenshui ; Zheng, Yiming ; Fu, Peifang ; Yan, Zhangyong ; Jia-Bao, Liu</creatorcontrib><description>Let \(G=(V,E)\) be a connected graph, where \(V=\{v_1, v_2, \cdots, v_n\}\) and \(m=|E|\). \(d_i\) will denote the degree of vertex \(v_i\) of \(G\), and \(\Delta=\max_{1\leq i \leq n} d_i\). The ABC matrix of \(G\) is defined as \(M(G)=(m_{ij})_{n \times n}\), where \(m_{ij}=\sqrt{(d_i + d_j -2)/(d_i d_j)}\) if \(v_i v_j \in E\), and 0 otherwise. The largest eigenvalue of \(M(G)\) is called the ABC spectral radius of \(G\), denoted by \(\rho_{ABC}(G)\). Recently, this graph invariant has attracted some attentions. We prove that \(\rho_{ABC}(G) \leq \sqrt{\Delta+(2m-n+1)/\Delta -2}\). As an application, the unique tree with \(n \geq 4\) vertices having second largest ABC spectral radius is determined.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Apexes ; Eigenvalues ; Spectra ; Trees (mathematics)</subject><ispartof>arXiv.org, 2020-04</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Lin, Wenshui</creatorcontrib><creatorcontrib>Zheng, Yiming</creatorcontrib><creatorcontrib>Fu, Peifang</creatorcontrib><creatorcontrib>Yan, Zhangyong</creatorcontrib><creatorcontrib>Jia-Bao, Liu</creatorcontrib><title>On the Maximum ABC Spectral Radius of Connected Graphs and Trees</title><title>arXiv.org</title><description>Let \(G=(V,E)\) be a connected graph, where \(V=\{v_1, v_2, \cdots, v_n\}\) and \(m=|E|\). \(d_i\) will denote the degree of vertex \(v_i\) of \(G\), and \(\Delta=\max_{1\leq i \leq n} d_i\). The ABC matrix of \(G\) is defined as \(M(G)=(m_{ij})_{n \times n}\), where \(m_{ij}=\sqrt{(d_i + d_j -2)/(d_i d_j)}\) if \(v_i v_j \in E\), and 0 otherwise. The largest eigenvalue of \(M(G)\) is called the ABC spectral radius of \(G\), denoted by \(\rho_{ABC}(G)\). Recently, this graph invariant has attracted some attentions. We prove that \(\rho_{ABC}(G) \leq \sqrt{\Delta+(2m-n+1)/\Delta -2}\). As an application, the unique tree with \(n \geq 4\) vertices having second largest ABC spectral radius is determined.</description><subject>Apexes</subject><subject>Eigenvalues</subject><subject>Spectra</subject><subject>Trees (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNissKgkAUQIcgSMp_uNBa0DuN2a6SHpsIyr0MeUVFZ6YZB_r8XPQBrQ6cc2YsQM6TKNsgLljoXBfHMaZbFIIHbH9XMDYEN_lpBz_A4ZjD09BrtLKHh6xa70DXkGulJkkVXKw0jQOpKigskVuxeS17R-GPS7Y-n4r8Ghmr357cWHbaWzWlEvkOE8xEKvh_1xd-JTem</recordid><startdate>20200417</startdate><enddate>20200417</enddate><creator>Lin, Wenshui</creator><creator>Zheng, Yiming</creator><creator>Fu, Peifang</creator><creator>Yan, Zhangyong</creator><creator>Jia-Bao, Liu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200417</creationdate><title>On the Maximum ABC Spectral Radius of Connected Graphs and Trees</title><author>Lin, Wenshui ; Zheng, Yiming ; Fu, Peifang ; Yan, Zhangyong ; Jia-Bao, Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23921285653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apexes</topic><topic>Eigenvalues</topic><topic>Spectra</topic><topic>Trees (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Lin, Wenshui</creatorcontrib><creatorcontrib>Zheng, Yiming</creatorcontrib><creatorcontrib>Fu, Peifang</creatorcontrib><creatorcontrib>Yan, Zhangyong</creatorcontrib><creatorcontrib>Jia-Bao, Liu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Wenshui</au><au>Zheng, Yiming</au><au>Fu, Peifang</au><au>Yan, Zhangyong</au><au>Jia-Bao, Liu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the Maximum ABC Spectral Radius of Connected Graphs and Trees</atitle><jtitle>arXiv.org</jtitle><date>2020-04-17</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Let \(G=(V,E)\) be a connected graph, where \(V=\{v_1, v_2, \cdots, v_n\}\) and \(m=|E|\). \(d_i\) will denote the degree of vertex \(v_i\) of \(G\), and \(\Delta=\max_{1\leq i \leq n} d_i\). The ABC matrix of \(G\) is defined as \(M(G)=(m_{ij})_{n \times n}\), where \(m_{ij}=\sqrt{(d_i + d_j -2)/(d_i d_j)}\) if \(v_i v_j \in E\), and 0 otherwise. The largest eigenvalue of \(M(G)\) is called the ABC spectral radius of \(G\), denoted by \(\rho_{ABC}(G)\). Recently, this graph invariant has attracted some attentions. We prove that \(\rho_{ABC}(G) \leq \sqrt{\Delta+(2m-n+1)/\Delta -2}\). As an application, the unique tree with \(n \geq 4\) vertices having second largest ABC spectral radius is determined.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2392128565 |
source | Free E- Journals |
subjects | Apexes Eigenvalues Spectra Trees (mathematics) |
title | On the Maximum ABC Spectral Radius of Connected Graphs and Trees |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A55%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20Maximum%20ABC%20Spectral%20Radius%20of%20Connected%20Graphs%20and%20Trees&rft.jtitle=arXiv.org&rft.au=Lin,%20Wenshui&rft.date=2020-04-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2392128565%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2392128565&rft_id=info:pmid/&rfr_iscdi=true |