Modeling and analysis for thermal management in gallium oxide field-effect transistors
Increased attention has been paid to the thermal management of β-Ga2O3 devices as a result of the large thermal resistance that can present itself in part due to its low intrinsic thermal conductivity. A number of die-level thermal management approaches exist that could be viable for thermal managem...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2020-04, Vol.127 (15) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 15 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 127 |
creator | Yuan, Chao Zhang, Yuewei Montgomery, Robert Kim, Samuel Shi, Jingjing Mauze, Akhil Itoh, Takeki Speck, James S. Graham, Samuel |
description | Increased attention has been paid to the thermal management of β-Ga2O3 devices as a result of the large thermal resistance that can present itself in part due to its low intrinsic thermal conductivity. A number of die-level thermal management approaches exist that could be viable for thermal management. However, they have not been assessed for β-Ga2O3 devices exclusively. Here, we explore the limits of various die level thermal management schemes on a β-Ga2O3 metal–semiconductor field-effect transistor using numerical simulations. The effects of the various cooling approaches on the device channel temperature were comprehensively investigated, along with guidance for material selection to enable the most effective thermal solutions. Among various cooling strategies, double side cooling combined with a heat spreader used in the active region of the device can suppress the device thermal resistance to as low as 11 mm °C/W, achieving a maximum dissipated power density as high as 16 W/mm for a junction temperature limit of 200 °C. A multi-finger transistor thermal model was also developed to assess the potential of β-Ga2O3 devices for higher output power applications. Overall, this numerical study shows that it is possible to achieve high power β-Ga2O3 device operation with appropriate die-level thermal management solutions. |
doi_str_mv | 10.1063/1.5141332 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2392117983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2392117983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-60e2b6037ddf36f8e3bdc585caf7a4733400bc3b6ba42d5d309eeb749255c50b3</originalsourceid><addsrcrecordid>eNp90EtLAzEQAOAgCtbqwX8Q8KSwdZJsdjdHKb5A8aJeQzaPmrK7qUkq9t-70qIHwcMwMHwzzAxCpwRmBCp2SWaclIQxuocmBBpR1JzDPpoAUFI0ohaH6CilJQAhDRMT9PoYjO38sMBqMGOobpN8wi5EnN9s7FWH-7G6sL0dMvYDXqiu8-seh09vLHbedqawzlmdcY5qGJtziOkYHTjVJXuyy1P0cnP9PL8rHp5u7-dXD4VmFc1FBZa2FbDaGMcq11jWGs0brpWrVVkzVgK0mrVVq0pquGEgrG3rUlDONYeWTdHZdu4qhve1TVkuwzqOVyRJmaCE1KJhozrfKh1DStE6uYq-V3EjCcjvt0kid28b7cXWJu2zyj4MP_gjxF8oV-PK_-C_k78Ap817yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2392117983</pqid></control><display><type>article</type><title>Modeling and analysis for thermal management in gallium oxide field-effect transistors</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Yuan, Chao ; Zhang, Yuewei ; Montgomery, Robert ; Kim, Samuel ; Shi, Jingjing ; Mauze, Akhil ; Itoh, Takeki ; Speck, James S. ; Graham, Samuel</creator><creatorcontrib>Yuan, Chao ; Zhang, Yuewei ; Montgomery, Robert ; Kim, Samuel ; Shi, Jingjing ; Mauze, Akhil ; Itoh, Takeki ; Speck, James S. ; Graham, Samuel</creatorcontrib><description>Increased attention has been paid to the thermal management of β-Ga2O3 devices as a result of the large thermal resistance that can present itself in part due to its low intrinsic thermal conductivity. A number of die-level thermal management approaches exist that could be viable for thermal management. However, they have not been assessed for β-Ga2O3 devices exclusively. Here, we explore the limits of various die level thermal management schemes on a β-Ga2O3 metal–semiconductor field-effect transistor using numerical simulations. The effects of the various cooling approaches on the device channel temperature were comprehensively investigated, along with guidance for material selection to enable the most effective thermal solutions. Among various cooling strategies, double side cooling combined with a heat spreader used in the active region of the device can suppress the device thermal resistance to as low as 11 mm °C/W, achieving a maximum dissipated power density as high as 16 W/mm for a junction temperature limit of 200 °C. A multi-finger transistor thermal model was also developed to assess the potential of β-Ga2O3 devices for higher output power applications. Overall, this numerical study shows that it is possible to achieve high power β-Ga2O3 device operation with appropriate die-level thermal management solutions.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5141332</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Computer simulation ; Cooling ; Cooling effects ; Field effect transistors ; Gallium oxides ; Heat transfer ; Materials selection ; Mathematical models ; Semiconductor devices ; Side cooling ; Thermal analysis ; Thermal conductivity ; Thermal energy ; Thermal management ; Thermal resistance ; Transistors</subject><ispartof>Journal of applied physics, 2020-04, Vol.127 (15)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-60e2b6037ddf36f8e3bdc585caf7a4733400bc3b6ba42d5d309eeb749255c50b3</citedby><cites>FETCH-LOGICAL-c362t-60e2b6037ddf36f8e3bdc585caf7a4733400bc3b6ba42d5d309eeb749255c50b3</cites><orcidid>0000-0002-4192-1442 ; 0000-0001-9804-1924 ; 0000-0003-3116-6049 ; 0000-0002-1299-1636 ; 0000-0002-9123-4923 ; 0000-0002-0249-4468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5141332$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27903,27904,76130</link.rule.ids></links><search><creatorcontrib>Yuan, Chao</creatorcontrib><creatorcontrib>Zhang, Yuewei</creatorcontrib><creatorcontrib>Montgomery, Robert</creatorcontrib><creatorcontrib>Kim, Samuel</creatorcontrib><creatorcontrib>Shi, Jingjing</creatorcontrib><creatorcontrib>Mauze, Akhil</creatorcontrib><creatorcontrib>Itoh, Takeki</creatorcontrib><creatorcontrib>Speck, James S.</creatorcontrib><creatorcontrib>Graham, Samuel</creatorcontrib><title>Modeling and analysis for thermal management in gallium oxide field-effect transistors</title><title>Journal of applied physics</title><description>Increased attention has been paid to the thermal management of β-Ga2O3 devices as a result of the large thermal resistance that can present itself in part due to its low intrinsic thermal conductivity. A number of die-level thermal management approaches exist that could be viable for thermal management. However, they have not been assessed for β-Ga2O3 devices exclusively. Here, we explore the limits of various die level thermal management schemes on a β-Ga2O3 metal–semiconductor field-effect transistor using numerical simulations. The effects of the various cooling approaches on the device channel temperature were comprehensively investigated, along with guidance for material selection to enable the most effective thermal solutions. Among various cooling strategies, double side cooling combined with a heat spreader used in the active region of the device can suppress the device thermal resistance to as low as 11 mm °C/W, achieving a maximum dissipated power density as high as 16 W/mm for a junction temperature limit of 200 °C. A multi-finger transistor thermal model was also developed to assess the potential of β-Ga2O3 devices for higher output power applications. Overall, this numerical study shows that it is possible to achieve high power β-Ga2O3 device operation with appropriate die-level thermal management solutions.</description><subject>Applied physics</subject><subject>Computer simulation</subject><subject>Cooling</subject><subject>Cooling effects</subject><subject>Field effect transistors</subject><subject>Gallium oxides</subject><subject>Heat transfer</subject><subject>Materials selection</subject><subject>Mathematical models</subject><subject>Semiconductor devices</subject><subject>Side cooling</subject><subject>Thermal analysis</subject><subject>Thermal conductivity</subject><subject>Thermal energy</subject><subject>Thermal management</subject><subject>Thermal resistance</subject><subject>Transistors</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90EtLAzEQAOAgCtbqwX8Q8KSwdZJsdjdHKb5A8aJeQzaPmrK7qUkq9t-70qIHwcMwMHwzzAxCpwRmBCp2SWaclIQxuocmBBpR1JzDPpoAUFI0ohaH6CilJQAhDRMT9PoYjO38sMBqMGOobpN8wi5EnN9s7FWH-7G6sL0dMvYDXqiu8-seh09vLHbedqawzlmdcY5qGJtziOkYHTjVJXuyy1P0cnP9PL8rHp5u7-dXD4VmFc1FBZa2FbDaGMcq11jWGs0brpWrVVkzVgK0mrVVq0pquGEgrG3rUlDONYeWTdHZdu4qhve1TVkuwzqOVyRJmaCE1KJhozrfKh1DStE6uYq-V3EjCcjvt0kid28b7cXWJu2zyj4MP_gjxF8oV-PK_-C_k78Ap817yw</recordid><startdate>20200421</startdate><enddate>20200421</enddate><creator>Yuan, Chao</creator><creator>Zhang, Yuewei</creator><creator>Montgomery, Robert</creator><creator>Kim, Samuel</creator><creator>Shi, Jingjing</creator><creator>Mauze, Akhil</creator><creator>Itoh, Takeki</creator><creator>Speck, James S.</creator><creator>Graham, Samuel</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4192-1442</orcidid><orcidid>https://orcid.org/0000-0001-9804-1924</orcidid><orcidid>https://orcid.org/0000-0003-3116-6049</orcidid><orcidid>https://orcid.org/0000-0002-1299-1636</orcidid><orcidid>https://orcid.org/0000-0002-9123-4923</orcidid><orcidid>https://orcid.org/0000-0002-0249-4468</orcidid></search><sort><creationdate>20200421</creationdate><title>Modeling and analysis for thermal management in gallium oxide field-effect transistors</title><author>Yuan, Chao ; Zhang, Yuewei ; Montgomery, Robert ; Kim, Samuel ; Shi, Jingjing ; Mauze, Akhil ; Itoh, Takeki ; Speck, James S. ; Graham, Samuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-60e2b6037ddf36f8e3bdc585caf7a4733400bc3b6ba42d5d309eeb749255c50b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Computer simulation</topic><topic>Cooling</topic><topic>Cooling effects</topic><topic>Field effect transistors</topic><topic>Gallium oxides</topic><topic>Heat transfer</topic><topic>Materials selection</topic><topic>Mathematical models</topic><topic>Semiconductor devices</topic><topic>Side cooling</topic><topic>Thermal analysis</topic><topic>Thermal conductivity</topic><topic>Thermal energy</topic><topic>Thermal management</topic><topic>Thermal resistance</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Chao</creatorcontrib><creatorcontrib>Zhang, Yuewei</creatorcontrib><creatorcontrib>Montgomery, Robert</creatorcontrib><creatorcontrib>Kim, Samuel</creatorcontrib><creatorcontrib>Shi, Jingjing</creatorcontrib><creatorcontrib>Mauze, Akhil</creatorcontrib><creatorcontrib>Itoh, Takeki</creatorcontrib><creatorcontrib>Speck, James S.</creatorcontrib><creatorcontrib>Graham, Samuel</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Chao</au><au>Zhang, Yuewei</au><au>Montgomery, Robert</au><au>Kim, Samuel</au><au>Shi, Jingjing</au><au>Mauze, Akhil</au><au>Itoh, Takeki</au><au>Speck, James S.</au><au>Graham, Samuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and analysis for thermal management in gallium oxide field-effect transistors</atitle><jtitle>Journal of applied physics</jtitle><date>2020-04-21</date><risdate>2020</risdate><volume>127</volume><issue>15</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Increased attention has been paid to the thermal management of β-Ga2O3 devices as a result of the large thermal resistance that can present itself in part due to its low intrinsic thermal conductivity. A number of die-level thermal management approaches exist that could be viable for thermal management. However, they have not been assessed for β-Ga2O3 devices exclusively. Here, we explore the limits of various die level thermal management schemes on a β-Ga2O3 metal–semiconductor field-effect transistor using numerical simulations. The effects of the various cooling approaches on the device channel temperature were comprehensively investigated, along with guidance for material selection to enable the most effective thermal solutions. Among various cooling strategies, double side cooling combined with a heat spreader used in the active region of the device can suppress the device thermal resistance to as low as 11 mm °C/W, achieving a maximum dissipated power density as high as 16 W/mm for a junction temperature limit of 200 °C. A multi-finger transistor thermal model was also developed to assess the potential of β-Ga2O3 devices for higher output power applications. Overall, this numerical study shows that it is possible to achieve high power β-Ga2O3 device operation with appropriate die-level thermal management solutions.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5141332</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4192-1442</orcidid><orcidid>https://orcid.org/0000-0001-9804-1924</orcidid><orcidid>https://orcid.org/0000-0003-3116-6049</orcidid><orcidid>https://orcid.org/0000-0002-1299-1636</orcidid><orcidid>https://orcid.org/0000-0002-9123-4923</orcidid><orcidid>https://orcid.org/0000-0002-0249-4468</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2020-04, Vol.127 (15) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_2392117983 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Computer simulation Cooling Cooling effects Field effect transistors Gallium oxides Heat transfer Materials selection Mathematical models Semiconductor devices Side cooling Thermal analysis Thermal conductivity Thermal energy Thermal management Thermal resistance Transistors |
title | Modeling and analysis for thermal management in gallium oxide field-effect transistors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A23%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20analysis%20for%20thermal%20management%20in%20gallium%20oxide%20field-effect%20transistors&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Yuan,%20Chao&rft.date=2020-04-21&rft.volume=127&rft.issue=15&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5141332&rft_dat=%3Cproquest_scita%3E2392117983%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2392117983&rft_id=info:pmid/&rfr_iscdi=true |