Modeling and analysis for thermal management in gallium oxide field-effect transistors

Increased attention has been paid to the thermal management of β-Ga2O3 devices as a result of the large thermal resistance that can present itself in part due to its low intrinsic thermal conductivity. A number of die-level thermal management approaches exist that could be viable for thermal managem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2020-04, Vol.127 (15)
Hauptverfasser: Yuan, Chao, Zhang, Yuewei, Montgomery, Robert, Kim, Samuel, Shi, Jingjing, Mauze, Akhil, Itoh, Takeki, Speck, James S., Graham, Samuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 15
container_start_page
container_title Journal of applied physics
container_volume 127
creator Yuan, Chao
Zhang, Yuewei
Montgomery, Robert
Kim, Samuel
Shi, Jingjing
Mauze, Akhil
Itoh, Takeki
Speck, James S.
Graham, Samuel
description Increased attention has been paid to the thermal management of β-Ga2O3 devices as a result of the large thermal resistance that can present itself in part due to its low intrinsic thermal conductivity. A number of die-level thermal management approaches exist that could be viable for thermal management. However, they have not been assessed for β-Ga2O3 devices exclusively. Here, we explore the limits of various die level thermal management schemes on a β-Ga2O3 metal–semiconductor field-effect transistor using numerical simulations. The effects of the various cooling approaches on the device channel temperature were comprehensively investigated, along with guidance for material selection to enable the most effective thermal solutions. Among various cooling strategies, double side cooling combined with a heat spreader used in the active region of the device can suppress the device thermal resistance to as low as 11 mm °C/W, achieving a maximum dissipated power density as high as 16 W/mm for a junction temperature limit of 200 °C. A multi-finger transistor thermal model was also developed to assess the potential of β-Ga2O3 devices for higher output power applications. Overall, this numerical study shows that it is possible to achieve high power β-Ga2O3 device operation with appropriate die-level thermal management solutions.
doi_str_mv 10.1063/1.5141332
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2392117983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2392117983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-60e2b6037ddf36f8e3bdc585caf7a4733400bc3b6ba42d5d309eeb749255c50b3</originalsourceid><addsrcrecordid>eNp90EtLAzEQAOAgCtbqwX8Q8KSwdZJsdjdHKb5A8aJeQzaPmrK7qUkq9t-70qIHwcMwMHwzzAxCpwRmBCp2SWaclIQxuocmBBpR1JzDPpoAUFI0ohaH6CilJQAhDRMT9PoYjO38sMBqMGOobpN8wi5EnN9s7FWH-7G6sL0dMvYDXqiu8-seh09vLHbedqawzlmdcY5qGJtziOkYHTjVJXuyy1P0cnP9PL8rHp5u7-dXD4VmFc1FBZa2FbDaGMcq11jWGs0brpWrVVkzVgK0mrVVq0pquGEgrG3rUlDONYeWTdHZdu4qhve1TVkuwzqOVyRJmaCE1KJhozrfKh1DStE6uYq-V3EjCcjvt0kid28b7cXWJu2zyj4MP_gjxF8oV-PK_-C_k78Ap817yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2392117983</pqid></control><display><type>article</type><title>Modeling and analysis for thermal management in gallium oxide field-effect transistors</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Yuan, Chao ; Zhang, Yuewei ; Montgomery, Robert ; Kim, Samuel ; Shi, Jingjing ; Mauze, Akhil ; Itoh, Takeki ; Speck, James S. ; Graham, Samuel</creator><creatorcontrib>Yuan, Chao ; Zhang, Yuewei ; Montgomery, Robert ; Kim, Samuel ; Shi, Jingjing ; Mauze, Akhil ; Itoh, Takeki ; Speck, James S. ; Graham, Samuel</creatorcontrib><description>Increased attention has been paid to the thermal management of β-Ga2O3 devices as a result of the large thermal resistance that can present itself in part due to its low intrinsic thermal conductivity. A number of die-level thermal management approaches exist that could be viable for thermal management. However, they have not been assessed for β-Ga2O3 devices exclusively. Here, we explore the limits of various die level thermal management schemes on a β-Ga2O3 metal–semiconductor field-effect transistor using numerical simulations. The effects of the various cooling approaches on the device channel temperature were comprehensively investigated, along with guidance for material selection to enable the most effective thermal solutions. Among various cooling strategies, double side cooling combined with a heat spreader used in the active region of the device can suppress the device thermal resistance to as low as 11 mm °C/W, achieving a maximum dissipated power density as high as 16 W/mm for a junction temperature limit of 200 °C. A multi-finger transistor thermal model was also developed to assess the potential of β-Ga2O3 devices for higher output power applications. Overall, this numerical study shows that it is possible to achieve high power β-Ga2O3 device operation with appropriate die-level thermal management solutions.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5141332</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Computer simulation ; Cooling ; Cooling effects ; Field effect transistors ; Gallium oxides ; Heat transfer ; Materials selection ; Mathematical models ; Semiconductor devices ; Side cooling ; Thermal analysis ; Thermal conductivity ; Thermal energy ; Thermal management ; Thermal resistance ; Transistors</subject><ispartof>Journal of applied physics, 2020-04, Vol.127 (15)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-60e2b6037ddf36f8e3bdc585caf7a4733400bc3b6ba42d5d309eeb749255c50b3</citedby><cites>FETCH-LOGICAL-c362t-60e2b6037ddf36f8e3bdc585caf7a4733400bc3b6ba42d5d309eeb749255c50b3</cites><orcidid>0000-0002-4192-1442 ; 0000-0001-9804-1924 ; 0000-0003-3116-6049 ; 0000-0002-1299-1636 ; 0000-0002-9123-4923 ; 0000-0002-0249-4468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5141332$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27903,27904,76130</link.rule.ids></links><search><creatorcontrib>Yuan, Chao</creatorcontrib><creatorcontrib>Zhang, Yuewei</creatorcontrib><creatorcontrib>Montgomery, Robert</creatorcontrib><creatorcontrib>Kim, Samuel</creatorcontrib><creatorcontrib>Shi, Jingjing</creatorcontrib><creatorcontrib>Mauze, Akhil</creatorcontrib><creatorcontrib>Itoh, Takeki</creatorcontrib><creatorcontrib>Speck, James S.</creatorcontrib><creatorcontrib>Graham, Samuel</creatorcontrib><title>Modeling and analysis for thermal management in gallium oxide field-effect transistors</title><title>Journal of applied physics</title><description>Increased attention has been paid to the thermal management of β-Ga2O3 devices as a result of the large thermal resistance that can present itself in part due to its low intrinsic thermal conductivity. A number of die-level thermal management approaches exist that could be viable for thermal management. However, they have not been assessed for β-Ga2O3 devices exclusively. Here, we explore the limits of various die level thermal management schemes on a β-Ga2O3 metal–semiconductor field-effect transistor using numerical simulations. The effects of the various cooling approaches on the device channel temperature were comprehensively investigated, along with guidance for material selection to enable the most effective thermal solutions. Among various cooling strategies, double side cooling combined with a heat spreader used in the active region of the device can suppress the device thermal resistance to as low as 11 mm °C/W, achieving a maximum dissipated power density as high as 16 W/mm for a junction temperature limit of 200 °C. A multi-finger transistor thermal model was also developed to assess the potential of β-Ga2O3 devices for higher output power applications. Overall, this numerical study shows that it is possible to achieve high power β-Ga2O3 device operation with appropriate die-level thermal management solutions.</description><subject>Applied physics</subject><subject>Computer simulation</subject><subject>Cooling</subject><subject>Cooling effects</subject><subject>Field effect transistors</subject><subject>Gallium oxides</subject><subject>Heat transfer</subject><subject>Materials selection</subject><subject>Mathematical models</subject><subject>Semiconductor devices</subject><subject>Side cooling</subject><subject>Thermal analysis</subject><subject>Thermal conductivity</subject><subject>Thermal energy</subject><subject>Thermal management</subject><subject>Thermal resistance</subject><subject>Transistors</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90EtLAzEQAOAgCtbqwX8Q8KSwdZJsdjdHKb5A8aJeQzaPmrK7qUkq9t-70qIHwcMwMHwzzAxCpwRmBCp2SWaclIQxuocmBBpR1JzDPpoAUFI0ohaH6CilJQAhDRMT9PoYjO38sMBqMGOobpN8wi5EnN9s7FWH-7G6sL0dMvYDXqiu8-seh09vLHbedqawzlmdcY5qGJtziOkYHTjVJXuyy1P0cnP9PL8rHp5u7-dXD4VmFc1FBZa2FbDaGMcq11jWGs0brpWrVVkzVgK0mrVVq0pquGEgrG3rUlDONYeWTdHZdu4qhve1TVkuwzqOVyRJmaCE1KJhozrfKh1DStE6uYq-V3EjCcjvt0kid28b7cXWJu2zyj4MP_gjxF8oV-PK_-C_k78Ap817yw</recordid><startdate>20200421</startdate><enddate>20200421</enddate><creator>Yuan, Chao</creator><creator>Zhang, Yuewei</creator><creator>Montgomery, Robert</creator><creator>Kim, Samuel</creator><creator>Shi, Jingjing</creator><creator>Mauze, Akhil</creator><creator>Itoh, Takeki</creator><creator>Speck, James S.</creator><creator>Graham, Samuel</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4192-1442</orcidid><orcidid>https://orcid.org/0000-0001-9804-1924</orcidid><orcidid>https://orcid.org/0000-0003-3116-6049</orcidid><orcidid>https://orcid.org/0000-0002-1299-1636</orcidid><orcidid>https://orcid.org/0000-0002-9123-4923</orcidid><orcidid>https://orcid.org/0000-0002-0249-4468</orcidid></search><sort><creationdate>20200421</creationdate><title>Modeling and analysis for thermal management in gallium oxide field-effect transistors</title><author>Yuan, Chao ; Zhang, Yuewei ; Montgomery, Robert ; Kim, Samuel ; Shi, Jingjing ; Mauze, Akhil ; Itoh, Takeki ; Speck, James S. ; Graham, Samuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-60e2b6037ddf36f8e3bdc585caf7a4733400bc3b6ba42d5d309eeb749255c50b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Computer simulation</topic><topic>Cooling</topic><topic>Cooling effects</topic><topic>Field effect transistors</topic><topic>Gallium oxides</topic><topic>Heat transfer</topic><topic>Materials selection</topic><topic>Mathematical models</topic><topic>Semiconductor devices</topic><topic>Side cooling</topic><topic>Thermal analysis</topic><topic>Thermal conductivity</topic><topic>Thermal energy</topic><topic>Thermal management</topic><topic>Thermal resistance</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Chao</creatorcontrib><creatorcontrib>Zhang, Yuewei</creatorcontrib><creatorcontrib>Montgomery, Robert</creatorcontrib><creatorcontrib>Kim, Samuel</creatorcontrib><creatorcontrib>Shi, Jingjing</creatorcontrib><creatorcontrib>Mauze, Akhil</creatorcontrib><creatorcontrib>Itoh, Takeki</creatorcontrib><creatorcontrib>Speck, James S.</creatorcontrib><creatorcontrib>Graham, Samuel</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Chao</au><au>Zhang, Yuewei</au><au>Montgomery, Robert</au><au>Kim, Samuel</au><au>Shi, Jingjing</au><au>Mauze, Akhil</au><au>Itoh, Takeki</au><au>Speck, James S.</au><au>Graham, Samuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and analysis for thermal management in gallium oxide field-effect transistors</atitle><jtitle>Journal of applied physics</jtitle><date>2020-04-21</date><risdate>2020</risdate><volume>127</volume><issue>15</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Increased attention has been paid to the thermal management of β-Ga2O3 devices as a result of the large thermal resistance that can present itself in part due to its low intrinsic thermal conductivity. A number of die-level thermal management approaches exist that could be viable for thermal management. However, they have not been assessed for β-Ga2O3 devices exclusively. Here, we explore the limits of various die level thermal management schemes on a β-Ga2O3 metal–semiconductor field-effect transistor using numerical simulations. The effects of the various cooling approaches on the device channel temperature were comprehensively investigated, along with guidance for material selection to enable the most effective thermal solutions. Among various cooling strategies, double side cooling combined with a heat spreader used in the active region of the device can suppress the device thermal resistance to as low as 11 mm °C/W, achieving a maximum dissipated power density as high as 16 W/mm for a junction temperature limit of 200 °C. A multi-finger transistor thermal model was also developed to assess the potential of β-Ga2O3 devices for higher output power applications. Overall, this numerical study shows that it is possible to achieve high power β-Ga2O3 device operation with appropriate die-level thermal management solutions.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5141332</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4192-1442</orcidid><orcidid>https://orcid.org/0000-0001-9804-1924</orcidid><orcidid>https://orcid.org/0000-0003-3116-6049</orcidid><orcidid>https://orcid.org/0000-0002-1299-1636</orcidid><orcidid>https://orcid.org/0000-0002-9123-4923</orcidid><orcidid>https://orcid.org/0000-0002-0249-4468</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2020-04, Vol.127 (15)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2392117983
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Computer simulation
Cooling
Cooling effects
Field effect transistors
Gallium oxides
Heat transfer
Materials selection
Mathematical models
Semiconductor devices
Side cooling
Thermal analysis
Thermal conductivity
Thermal energy
Thermal management
Thermal resistance
Transistors
title Modeling and analysis for thermal management in gallium oxide field-effect transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A23%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20analysis%20for%20thermal%20management%20in%20gallium%20oxide%20field-effect%20transistors&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Yuan,%20Chao&rft.date=2020-04-21&rft.volume=127&rft.issue=15&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5141332&rft_dat=%3Cproquest_scita%3E2392117983%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2392117983&rft_id=info:pmid/&rfr_iscdi=true