Numerical and Wind Tunnel Simulation Studies of the Flow Field and Pollutant Diffusion around a Building under Neutral and Stable Atmospheric Stratifications
In this paper, the k–ε renormalization group (RNG) turbulence model is used to simulate the flow and dispersion of pollutants emitted from a source at the top of a cubic building under neutral and stable atmospheric stratifications, the results of which were compared with corresponding wind tunnel e...
Gespeichert in:
Veröffentlicht in: | Journal of applied meteorology and climatology 2019-11, Vol.58 (11), p.2405-2420 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2420 |
---|---|
container_issue | 11 |
container_start_page | 2405 |
container_title | Journal of applied meteorology and climatology |
container_volume | 58 |
creator | Guo, Dong-Peng Zhao, Peng Yao, Ren-Tai Li, Yun-Peng Hu, Ji-Min Fan, Dan |
description | In this paper, the k–ε renormalization group (RNG) turbulence model is used to simulate the flow and dispersion of pollutants emitted from a source at the top of a cubic building under neutral and stable atmospheric stratifications, the results of which were compared with corresponding wind tunnel experiment results. When atmosphere stratification is stable, the separation zones on the sides and at the top of a building are relatively smaller than those under neutral conditions, and the effect of the building in the horizontal direction is stronger than that in the vertical direction. The variation in turbulent kinetic energy under stable conditions is significantly lower than that under neutral conditions. The effect of atmospheric stratification on the turbulent kinetic energy becomes gradually more prominent with increased distance. When atmosphere conditions are stable, the vertical distribution of the plume is smaller than that of neutral conditions, but the lateral spread and near-ground concentration are slightly larger than those of neutral conditions, mainly because stable atmospheric stratification suppresses the vertical motions of airflow and increases the horizontal spread of the plume. |
doi_str_mv | 10.1175/JAMC-D-19-0045.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2392040249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26846363</jstor_id><sourcerecordid>26846363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-ba86269d87dccb361472be0305375e90a54bdfbd75c8765c0c598ad8a1fbaa123</originalsourceid><addsrcrecordid>eNo9UUlLAzEYHURBrd69CAHPU7POcqytdaEuUMVjyEwyNiWd1CyIP8b_asaKl29973sfvCw7Q3CMUMku7ycP03yWozqHkLIx2suOEGNVXlGC9_9rTA-zY-_XCUPLkh1l349xo5xuhQGil-BNp_AS-14ZsNSbaETQtgfLEKVWHtgOhJUCc2M_wVwrI39Jz9aYGEQfwEx3XfQDQzgb00qAq6iN1P07SK1y4FHF4P7ElkE0RoFJ2Fi_XQ1fpJFLil36Z9D1J9lBJ4xXp395lL3Or1-mt_ni6eZuOlnkLSEs5I2oClzUsipl2zakQLTEjYIEMlIyVUPBaCO7RpasrcqCtbBldSVkJVDXCIEwGWUXu7tbZz-i8oGvbXR9kuSY1BhSiGmdUHCHap313qmOb53eCPfFEeSDCXwwgc84qvlgAkeJcr6jrH2w7h-Pi4oWpCDkB0Qkhus</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2392040249</pqid></control><display><type>article</type><title>Numerical and Wind Tunnel Simulation Studies of the Flow Field and Pollutant Diffusion around a Building under Neutral and Stable Atmospheric Stratifications</title><source>American Meteorological Society</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Guo, Dong-Peng ; Zhao, Peng ; Yao, Ren-Tai ; Li, Yun-Peng ; Hu, Ji-Min ; Fan, Dan</creator><creatorcontrib>Guo, Dong-Peng ; Zhao, Peng ; Yao, Ren-Tai ; Li, Yun-Peng ; Hu, Ji-Min ; Fan, Dan</creatorcontrib><description>In this paper, the k–ε renormalization group (RNG) turbulence model is used to simulate the flow and dispersion of pollutants emitted from a source at the top of a cubic building under neutral and stable atmospheric stratifications, the results of which were compared with corresponding wind tunnel experiment results. When atmosphere stratification is stable, the separation zones on the sides and at the top of a building are relatively smaller than those under neutral conditions, and the effect of the building in the horizontal direction is stronger than that in the vertical direction. The variation in turbulent kinetic energy under stable conditions is significantly lower than that under neutral conditions. The effect of atmospheric stratification on the turbulent kinetic energy becomes gradually more prominent with increased distance. When atmosphere conditions are stable, the vertical distribution of the plume is smaller than that of neutral conditions, but the lateral spread and near-ground concentration are slightly larger than those of neutral conditions, mainly because stable atmospheric stratification suppresses the vertical motions of airflow and increases the horizontal spread of the plume.</description><identifier>ISSN: 1558-8424</identifier><identifier>EISSN: 1558-8432</identifier><identifier>DOI: 10.1175/JAMC-D-19-0045.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Aerodynamics ; Air flow ; Atmosphere ; Atmospheric boundary layer ; Atmospheric stratification ; Buildings ; Computational fluid dynamics ; Computer simulation ; Direction ; Experiments ; Flow simulation ; Horizontal orientation ; Kinematics ; Kinetic energy ; Mathematical models ; Pollutants ; Pollution dispersion ; Reynolds number ; Simulation ; Stratification ; Turbulence ; Turbulence models ; Turbulent kinetic energy ; Velocity ; Vertical distribution ; Wind shear ; Wind tunnel testing ; Wind tunnels</subject><ispartof>Journal of applied meteorology and climatology, 2019-11, Vol.58 (11), p.2405-2420</ispartof><rights>2019 American Meteorological Society</rights><rights>Copyright American Meteorological Society Nov 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-ba86269d87dccb361472be0305375e90a54bdfbd75c8765c0c598ad8a1fbaa123</citedby><cites>FETCH-LOGICAL-c335t-ba86269d87dccb361472be0305375e90a54bdfbd75c8765c0c598ad8a1fbaa123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26846363$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26846363$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,3681,27924,27925,58017,58250</link.rule.ids></links><search><creatorcontrib>Guo, Dong-Peng</creatorcontrib><creatorcontrib>Zhao, Peng</creatorcontrib><creatorcontrib>Yao, Ren-Tai</creatorcontrib><creatorcontrib>Li, Yun-Peng</creatorcontrib><creatorcontrib>Hu, Ji-Min</creatorcontrib><creatorcontrib>Fan, Dan</creatorcontrib><title>Numerical and Wind Tunnel Simulation Studies of the Flow Field and Pollutant Diffusion around a Building under Neutral and Stable Atmospheric Stratifications</title><title>Journal of applied meteorology and climatology</title><description>In this paper, the k–ε renormalization group (RNG) turbulence model is used to simulate the flow and dispersion of pollutants emitted from a source at the top of a cubic building under neutral and stable atmospheric stratifications, the results of which were compared with corresponding wind tunnel experiment results. When atmosphere stratification is stable, the separation zones on the sides and at the top of a building are relatively smaller than those under neutral conditions, and the effect of the building in the horizontal direction is stronger than that in the vertical direction. The variation in turbulent kinetic energy under stable conditions is significantly lower than that under neutral conditions. The effect of atmospheric stratification on the turbulent kinetic energy becomes gradually more prominent with increased distance. When atmosphere conditions are stable, the vertical distribution of the plume is smaller than that of neutral conditions, but the lateral spread and near-ground concentration are slightly larger than those of neutral conditions, mainly because stable atmospheric stratification suppresses the vertical motions of airflow and increases the horizontal spread of the plume.</description><subject>Aerodynamics</subject><subject>Air flow</subject><subject>Atmosphere</subject><subject>Atmospheric boundary layer</subject><subject>Atmospheric stratification</subject><subject>Buildings</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Direction</subject><subject>Experiments</subject><subject>Flow simulation</subject><subject>Horizontal orientation</subject><subject>Kinematics</subject><subject>Kinetic energy</subject><subject>Mathematical models</subject><subject>Pollutants</subject><subject>Pollution dispersion</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>Stratification</subject><subject>Turbulence</subject><subject>Turbulence models</subject><subject>Turbulent kinetic energy</subject><subject>Velocity</subject><subject>Vertical distribution</subject><subject>Wind shear</subject><subject>Wind tunnel testing</subject><subject>Wind tunnels</subject><issn>1558-8424</issn><issn>1558-8432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9UUlLAzEYHURBrd69CAHPU7POcqytdaEuUMVjyEwyNiWd1CyIP8b_asaKl29973sfvCw7Q3CMUMku7ycP03yWozqHkLIx2suOEGNVXlGC9_9rTA-zY-_XCUPLkh1l349xo5xuhQGil-BNp_AS-14ZsNSbaETQtgfLEKVWHtgOhJUCc2M_wVwrI39Jz9aYGEQfwEx3XfQDQzgb00qAq6iN1P07SK1y4FHF4P7ElkE0RoFJ2Fi_XQ1fpJFLil36Z9D1J9lBJ4xXp395lL3Or1-mt_ni6eZuOlnkLSEs5I2oClzUsipl2zakQLTEjYIEMlIyVUPBaCO7RpasrcqCtbBldSVkJVDXCIEwGWUXu7tbZz-i8oGvbXR9kuSY1BhSiGmdUHCHap313qmOb53eCPfFEeSDCXwwgc84qvlgAkeJcr6jrH2w7h-Pi4oWpCDkB0Qkhus</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Guo, Dong-Peng</creator><creator>Zhao, Peng</creator><creator>Yao, Ren-Tai</creator><creator>Li, Yun-Peng</creator><creator>Hu, Ji-Min</creator><creator>Fan, Dan</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20191101</creationdate><title>Numerical and Wind Tunnel Simulation Studies of the Flow Field and Pollutant Diffusion around a Building under Neutral and Stable Atmospheric Stratifications</title><author>Guo, Dong-Peng ; Zhao, Peng ; Yao, Ren-Tai ; Li, Yun-Peng ; Hu, Ji-Min ; Fan, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-ba86269d87dccb361472be0305375e90a54bdfbd75c8765c0c598ad8a1fbaa123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerodynamics</topic><topic>Air flow</topic><topic>Atmosphere</topic><topic>Atmospheric boundary layer</topic><topic>Atmospheric stratification</topic><topic>Buildings</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Direction</topic><topic>Experiments</topic><topic>Flow simulation</topic><topic>Horizontal orientation</topic><topic>Kinematics</topic><topic>Kinetic energy</topic><topic>Mathematical models</topic><topic>Pollutants</topic><topic>Pollution dispersion</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>Stratification</topic><topic>Turbulence</topic><topic>Turbulence models</topic><topic>Turbulent kinetic energy</topic><topic>Velocity</topic><topic>Vertical distribution</topic><topic>Wind shear</topic><topic>Wind tunnel testing</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Dong-Peng</creatorcontrib><creatorcontrib>Zhao, Peng</creatorcontrib><creatorcontrib>Yao, Ren-Tai</creatorcontrib><creatorcontrib>Li, Yun-Peng</creatorcontrib><creatorcontrib>Hu, Ji-Min</creatorcontrib><creatorcontrib>Fan, Dan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of applied meteorology and climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Dong-Peng</au><au>Zhao, Peng</au><au>Yao, Ren-Tai</au><au>Li, Yun-Peng</au><au>Hu, Ji-Min</au><au>Fan, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical and Wind Tunnel Simulation Studies of the Flow Field and Pollutant Diffusion around a Building under Neutral and Stable Atmospheric Stratifications</atitle><jtitle>Journal of applied meteorology and climatology</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>58</volume><issue>11</issue><spage>2405</spage><epage>2420</epage><pages>2405-2420</pages><issn>1558-8424</issn><eissn>1558-8432</eissn><abstract>In this paper, the k–ε renormalization group (RNG) turbulence model is used to simulate the flow and dispersion of pollutants emitted from a source at the top of a cubic building under neutral and stable atmospheric stratifications, the results of which were compared with corresponding wind tunnel experiment results. When atmosphere stratification is stable, the separation zones on the sides and at the top of a building are relatively smaller than those under neutral conditions, and the effect of the building in the horizontal direction is stronger than that in the vertical direction. The variation in turbulent kinetic energy under stable conditions is significantly lower than that under neutral conditions. The effect of atmospheric stratification on the turbulent kinetic energy becomes gradually more prominent with increased distance. When atmosphere conditions are stable, the vertical distribution of the plume is smaller than that of neutral conditions, but the lateral spread and near-ground concentration are slightly larger than those of neutral conditions, mainly because stable atmospheric stratification suppresses the vertical motions of airflow and increases the horizontal spread of the plume.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JAMC-D-19-0045.1</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1558-8424 |
ispartof | Journal of applied meteorology and climatology, 2019-11, Vol.58 (11), p.2405-2420 |
issn | 1558-8424 1558-8432 |
language | eng |
recordid | cdi_proquest_journals_2392040249 |
source | American Meteorological Society; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Aerodynamics Air flow Atmosphere Atmospheric boundary layer Atmospheric stratification Buildings Computational fluid dynamics Computer simulation Direction Experiments Flow simulation Horizontal orientation Kinematics Kinetic energy Mathematical models Pollutants Pollution dispersion Reynolds number Simulation Stratification Turbulence Turbulence models Turbulent kinetic energy Velocity Vertical distribution Wind shear Wind tunnel testing Wind tunnels |
title | Numerical and Wind Tunnel Simulation Studies of the Flow Field and Pollutant Diffusion around a Building under Neutral and Stable Atmospheric Stratifications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A27%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20and%20Wind%20Tunnel%20Simulation%20Studies%20of%20the%20Flow%20Field%20and%20Pollutant%20Diffusion%20around%20a%20Building%20under%20Neutral%20and%20Stable%20Atmospheric%20Stratifications&rft.jtitle=Journal%20of%20applied%20meteorology%20and%20climatology&rft.au=Guo,%20Dong-Peng&rft.date=2019-11-01&rft.volume=58&rft.issue=11&rft.spage=2405&rft.epage=2420&rft.pages=2405-2420&rft.issn=1558-8424&rft.eissn=1558-8432&rft_id=info:doi/10.1175/JAMC-D-19-0045.1&rft_dat=%3Cjstor_proqu%3E26846363%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2392040249&rft_id=info:pmid/&rft_jstor_id=26846363&rfr_iscdi=true |