Development of a Pressure–Precipitation Transmitter

A novel method is proposed to create very long term daily precipitation data for the extreme statistics by computing very long term daily sea level pressure (SLP) with the SLP emulator (a statistical multilevel regression model) and then converting the SLP into precipitation by combining statistical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied meteorology and climatology 2019-11, Vol.58 (11), p.2453-2468
Hauptverfasser: Inatsu, Masaru, Suematsu, Tamaki, Tamaki, Yuta, Nakano, Naoto, Mizushima, Kao, Shinohara, Mizuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2468
container_issue 11
container_start_page 2453
container_title Journal of applied meteorology and climatology
container_volume 58
creator Inatsu, Masaru
Suematsu, Tamaki
Tamaki, Yuta
Nakano, Naoto
Mizushima, Kao
Shinohara, Mizuki
description A novel method is proposed to create very long term daily precipitation data for the extreme statistics by computing very long term daily sea level pressure (SLP) with the SLP emulator (a statistical multilevel regression model) and then converting the SLP into precipitation by combining statistical downscaling methods of the analog ensemble and singular value decomposition (SVD). After a review of the SLP emulator, we present a multilevel regression model constructed for each month that is based on a time series of 1000 principal components of SLPs on global reanalysis data. Simple integration of the SLP emulator provides 100-yr daily SLP data, which are temporally interpolated into a 6-h interval. Next, the pressure–precipitation transmitter (PPT) is developed to convert 6-hourly SLP to daily precipitation. The PPT makes its first-guess estimate from a composite of time frames with analogous SLP transition patterns in the learning period. The departure of SLPs from the analog ensemble is then corrected with an SVD relationship between SLPs and precipitation. The final product showed a fairly realistic precipitation pattern, displaying temporal and spatial continuity. The annual-maximum precipitation of the estimated 100-yr data extended the tail of probability distribution of the 8-yr learning data.
doi_str_mv 10.1175/jamc-d-19-0070.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2392037214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26846366</jstor_id><sourcerecordid>26846366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-9dced5f3e1c06143bb02cc8d3461c8d6126e4254e3e5cc29316aa0981aa79ba13</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt7N8KA62huXjNZltYnFV3UdUgzd2CGzsMkFdz5H_yH_hKnVLo6h8s534VDyCWwG4Bc3Tau9bSkYChj-Xg7IhNQqqCFFPz44Lk8JWcxNoxJmedqQtQCP3HTDy12KeurzGVvAWPcBvz9_hmtr4c6uVT3XbYKrottnRKGc3JSuU3Ei3-dkvf7u9X8kS5fH57msyX1kkGipvRYqkogeKZBivWace-LUkgNo2jgGiVXEgUq77kRoJ1jpgDncrN2IKbkes8dQv-xxZhs029DN760XBjORM5H7JSwfcqHPsaAlR1C3brwZYHZ3Tj2efYytwsLxu7GsTvw1b7SxNSHQ57rQmqhtfgD8OZiUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2392037214</pqid></control><display><type>article</type><title>Development of a Pressure–Precipitation Transmitter</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Inatsu, Masaru ; Suematsu, Tamaki ; Tamaki, Yuta ; Nakano, Naoto ; Mizushima, Kao ; Shinohara, Mizuki</creator><creatorcontrib>Inatsu, Masaru ; Suematsu, Tamaki ; Tamaki, Yuta ; Nakano, Naoto ; Mizushima, Kao ; Shinohara, Mizuki</creatorcontrib><description>A novel method is proposed to create very long term daily precipitation data for the extreme statistics by computing very long term daily sea level pressure (SLP) with the SLP emulator (a statistical multilevel regression model) and then converting the SLP into precipitation by combining statistical downscaling methods of the analog ensemble and singular value decomposition (SVD). After a review of the SLP emulator, we present a multilevel regression model constructed for each month that is based on a time series of 1000 principal components of SLPs on global reanalysis data. Simple integration of the SLP emulator provides 100-yr daily SLP data, which are temporally interpolated into a 6-h interval. Next, the pressure–precipitation transmitter (PPT) is developed to convert 6-hourly SLP to daily precipitation. The PPT makes its first-guess estimate from a composite of time frames with analogous SLP transition patterns in the learning period. The departure of SLPs from the analog ensemble is then corrected with an SVD relationship between SLPs and precipitation. The final product showed a fairly realistic precipitation pattern, displaying temporal and spatial continuity. The annual-maximum precipitation of the estimated 100-yr data extended the tail of probability distribution of the 8-yr learning data.</description><identifier>ISSN: 1558-8424</identifier><identifier>EISSN: 1558-8432</identifier><identifier>DOI: 10.1175/jamc-d-19-0070.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Analogs ; Annual precipitation ; Climate ; Daily precipitation ; Data ; Datasets ; Decomposition ; Disaster insurance ; Emulators ; Extreme values ; Extreme weather ; General circulation models ; Hydrologic data ; Learning ; Mathematical models ; Maximum precipitation ; Methods ; Oceanic analysis ; Precipitation ; Precipitation data ; Precipitation patterns ; Pressure ; Probability distribution ; Probability theory ; Rain ; Regression models ; Sea level ; Sea level pressure ; Singular value decomposition ; Statistical analysis ; Statistical methods ; Traffic control</subject><ispartof>Journal of applied meteorology and climatology, 2019-11, Vol.58 (11), p.2453-2468</ispartof><rights>2019 American Meteorological Society</rights><rights>Copyright American Meteorological Society Nov 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-9dced5f3e1c06143bb02cc8d3461c8d6126e4254e3e5cc29316aa0981aa79ba13</citedby><cites>FETCH-LOGICAL-c401t-9dced5f3e1c06143bb02cc8d3461c8d6126e4254e3e5cc29316aa0981aa79ba13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26846366$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26846366$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3668,27901,27902,57992,58225</link.rule.ids></links><search><creatorcontrib>Inatsu, Masaru</creatorcontrib><creatorcontrib>Suematsu, Tamaki</creatorcontrib><creatorcontrib>Tamaki, Yuta</creatorcontrib><creatorcontrib>Nakano, Naoto</creatorcontrib><creatorcontrib>Mizushima, Kao</creatorcontrib><creatorcontrib>Shinohara, Mizuki</creatorcontrib><title>Development of a Pressure–Precipitation Transmitter</title><title>Journal of applied meteorology and climatology</title><description>A novel method is proposed to create very long term daily precipitation data for the extreme statistics by computing very long term daily sea level pressure (SLP) with the SLP emulator (a statistical multilevel regression model) and then converting the SLP into precipitation by combining statistical downscaling methods of the analog ensemble and singular value decomposition (SVD). After a review of the SLP emulator, we present a multilevel regression model constructed for each month that is based on a time series of 1000 principal components of SLPs on global reanalysis data. Simple integration of the SLP emulator provides 100-yr daily SLP data, which are temporally interpolated into a 6-h interval. Next, the pressure–precipitation transmitter (PPT) is developed to convert 6-hourly SLP to daily precipitation. The PPT makes its first-guess estimate from a composite of time frames with analogous SLP transition patterns in the learning period. The departure of SLPs from the analog ensemble is then corrected with an SVD relationship between SLPs and precipitation. The final product showed a fairly realistic precipitation pattern, displaying temporal and spatial continuity. The annual-maximum precipitation of the estimated 100-yr data extended the tail of probability distribution of the 8-yr learning data.</description><subject>Analogs</subject><subject>Annual precipitation</subject><subject>Climate</subject><subject>Daily precipitation</subject><subject>Data</subject><subject>Datasets</subject><subject>Decomposition</subject><subject>Disaster insurance</subject><subject>Emulators</subject><subject>Extreme values</subject><subject>Extreme weather</subject><subject>General circulation models</subject><subject>Hydrologic data</subject><subject>Learning</subject><subject>Mathematical models</subject><subject>Maximum precipitation</subject><subject>Methods</subject><subject>Oceanic analysis</subject><subject>Precipitation</subject><subject>Precipitation data</subject><subject>Precipitation patterns</subject><subject>Pressure</subject><subject>Probability distribution</subject><subject>Probability theory</subject><subject>Rain</subject><subject>Regression models</subject><subject>Sea level</subject><subject>Sea level pressure</subject><subject>Singular value decomposition</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Traffic control</subject><issn>1558-8424</issn><issn>1558-8432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kEtLAzEUhYMoWKt7N8KA62huXjNZltYnFV3UdUgzd2CGzsMkFdz5H_yH_hKnVLo6h8s534VDyCWwG4Bc3Tau9bSkYChj-Xg7IhNQqqCFFPz44Lk8JWcxNoxJmedqQtQCP3HTDy12KeurzGVvAWPcBvz9_hmtr4c6uVT3XbYKrottnRKGc3JSuU3Ei3-dkvf7u9X8kS5fH57msyX1kkGipvRYqkogeKZBivWace-LUkgNo2jgGiVXEgUq77kRoJ1jpgDncrN2IKbkes8dQv-xxZhs029DN760XBjORM5H7JSwfcqHPsaAlR1C3brwZYHZ3Tj2efYytwsLxu7GsTvw1b7SxNSHQ57rQmqhtfgD8OZiUA</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Inatsu, Masaru</creator><creator>Suematsu, Tamaki</creator><creator>Tamaki, Yuta</creator><creator>Nakano, Naoto</creator><creator>Mizushima, Kao</creator><creator>Shinohara, Mizuki</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20191101</creationdate><title>Development of a Pressure–Precipitation Transmitter</title><author>Inatsu, Masaru ; Suematsu, Tamaki ; Tamaki, Yuta ; Nakano, Naoto ; Mizushima, Kao ; Shinohara, Mizuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-9dced5f3e1c06143bb02cc8d3461c8d6126e4254e3e5cc29316aa0981aa79ba13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analogs</topic><topic>Annual precipitation</topic><topic>Climate</topic><topic>Daily precipitation</topic><topic>Data</topic><topic>Datasets</topic><topic>Decomposition</topic><topic>Disaster insurance</topic><topic>Emulators</topic><topic>Extreme values</topic><topic>Extreme weather</topic><topic>General circulation models</topic><topic>Hydrologic data</topic><topic>Learning</topic><topic>Mathematical models</topic><topic>Maximum precipitation</topic><topic>Methods</topic><topic>Oceanic analysis</topic><topic>Precipitation</topic><topic>Precipitation data</topic><topic>Precipitation patterns</topic><topic>Pressure</topic><topic>Probability distribution</topic><topic>Probability theory</topic><topic>Rain</topic><topic>Regression models</topic><topic>Sea level</topic><topic>Sea level pressure</topic><topic>Singular value decomposition</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Traffic control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Inatsu, Masaru</creatorcontrib><creatorcontrib>Suematsu, Tamaki</creatorcontrib><creatorcontrib>Tamaki, Yuta</creatorcontrib><creatorcontrib>Nakano, Naoto</creatorcontrib><creatorcontrib>Mizushima, Kao</creatorcontrib><creatorcontrib>Shinohara, Mizuki</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of applied meteorology and climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Inatsu, Masaru</au><au>Suematsu, Tamaki</au><au>Tamaki, Yuta</au><au>Nakano, Naoto</au><au>Mizushima, Kao</au><au>Shinohara, Mizuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a Pressure–Precipitation Transmitter</atitle><jtitle>Journal of applied meteorology and climatology</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>58</volume><issue>11</issue><spage>2453</spage><epage>2468</epage><pages>2453-2468</pages><issn>1558-8424</issn><eissn>1558-8432</eissn><abstract>A novel method is proposed to create very long term daily precipitation data for the extreme statistics by computing very long term daily sea level pressure (SLP) with the SLP emulator (a statistical multilevel regression model) and then converting the SLP into precipitation by combining statistical downscaling methods of the analog ensemble and singular value decomposition (SVD). After a review of the SLP emulator, we present a multilevel regression model constructed for each month that is based on a time series of 1000 principal components of SLPs on global reanalysis data. Simple integration of the SLP emulator provides 100-yr daily SLP data, which are temporally interpolated into a 6-h interval. Next, the pressure–precipitation transmitter (PPT) is developed to convert 6-hourly SLP to daily precipitation. The PPT makes its first-guess estimate from a composite of time frames with analogous SLP transition patterns in the learning period. The departure of SLPs from the analog ensemble is then corrected with an SVD relationship between SLPs and precipitation. The final product showed a fairly realistic precipitation pattern, displaying temporal and spatial continuity. The annual-maximum precipitation of the estimated 100-yr data extended the tail of probability distribution of the 8-yr learning data.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/jamc-d-19-0070.1</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1558-8424
ispartof Journal of applied meteorology and climatology, 2019-11, Vol.58 (11), p.2453-2468
issn 1558-8424
1558-8432
language eng
recordid cdi_proquest_journals_2392037214
source Jstor Complete Legacy; American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Analogs
Annual precipitation
Climate
Daily precipitation
Data
Datasets
Decomposition
Disaster insurance
Emulators
Extreme values
Extreme weather
General circulation models
Hydrologic data
Learning
Mathematical models
Maximum precipitation
Methods
Oceanic analysis
Precipitation
Precipitation data
Precipitation patterns
Pressure
Probability distribution
Probability theory
Rain
Regression models
Sea level
Sea level pressure
Singular value decomposition
Statistical analysis
Statistical methods
Traffic control
title Development of a Pressure–Precipitation Transmitter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A07%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20Pressure%E2%80%93Precipitation%20Transmitter&rft.jtitle=Journal%20of%20applied%20meteorology%20and%20climatology&rft.au=Inatsu,%20Masaru&rft.date=2019-11-01&rft.volume=58&rft.issue=11&rft.spage=2453&rft.epage=2468&rft.pages=2453-2468&rft.issn=1558-8424&rft.eissn=1558-8432&rft_id=info:doi/10.1175/jamc-d-19-0070.1&rft_dat=%3Cjstor_proqu%3E26846366%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2392037214&rft_id=info:pmid/&rft_jstor_id=26846366&rfr_iscdi=true