Optically Modulated Threshold Switching in Core–Shell Quantum Dot Based Memristive Device
The threshold switching (TS) phenomenon in memristors has drawn great attention for its versatile applications in selectors, artificial neurons, true random number generators, and electronic integrations. The transition between nonvolatile resistive switching and volatile TS modes can be realized by...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2020-04, Vol.30 (16), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 16 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | Wang, Junjie Lv, Ziyu Xing, Xuechao Li, Xiaoguang Wang, Yan Chen, Meng Pang, Guijian Qian, Fangsheng Zhou, Ye Han, Su‐Ting |
description | The threshold switching (TS) phenomenon in memristors has drawn great attention for its versatile applications in selectors, artificial neurons, true random number generators, and electronic integrations. The transition between nonvolatile resistive switching and volatile TS modes can be realized by doping, varying annealing and voltage sweeping conditions, or imposing different compliance current. Here, a strategy is reported to achieve such transition by the noninvasive UV light stimulus based on InP/ZnS quantum dot (QD) memristor. The core–shell InP/ZnS QDs with quasi‐type II band alignment ensures photoexcited electrons localized in InP core, photoexcited hole state distributed in the outer shell, and subsequent lifetime controlling of conductive filament under light irradiation. Systematic mechanism investigations indicate that UV photogenerated holes are accumulated on the surface of the QD film, which is consistent with rapid transfer of photogenerated holes in the core–shell InP/ZnS structure. Based on the light‐modulated effect, a reconfigurable 9 × 9 visual data storage array with a key pattern and a simple leaky integrate‐and‐fire circuit are constructed. These results suggest the potential of direct optical modulation of memory mode through energy band engineering, leading to future optoelectronic and electronic device for the implementation of neuromorphic visual system and artificial neural networks.
Optically modulated threshold switching is realized in a core–shell quantum dot based memristor. A reconfigurable 9 × 9 visual data storage array with a key pattern and a simple leaky integrate‐and‐fire circuit are further constructed. These results can lead to future optoelectronic and electronic device for the implementation of neuromorphic visual system and artificial neural networks. |
doi_str_mv | 10.1002/adfm.201909114 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2391983493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2391983493</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3174-cd698d45284a3e9b23efaa2fab1ee629703bcaf0cbd79d5f99390af9e095de573</originalsourceid><addsrcrecordid>eNqFkM9LwzAUgIMoOKdXzwHPnUnTXznOzamwMWQTBA8lbV5sRtrOpN3Yzf_B_9C_xI7JPHp67_B978GH0DUlA0qIfyukKgc-oZxwSoMT1KMRjTxG_OT0uNPXc3Th3IoQGscs6KG3-brRuTBmh2e1bI1oQOJlYcEVtZF4sdVNXujqHesKj2oL359fiwKMwc-tqJq2xOO6wXfCddYMSqtdozeAx7DROVyiMyWMg6vf2Ucvk_vl6NGbzh-eRsOplzMaB14uI57IIPSTQDDgmc9ACeErkVGAyOcxYVkuFMkzGXMZKs4ZJ0JxIDyUEMasj24Od9e2_mjBNemqbm3VvUx9xilPWMBZRw0OVG5r5yyodG11KewupSTdB0z3AdNjwE7gB2GrDez-odPheDL7c38A8X92mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391983493</pqid></control><display><type>article</type><title>Optically Modulated Threshold Switching in Core–Shell Quantum Dot Based Memristive Device</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Wang, Junjie ; Lv, Ziyu ; Xing, Xuechao ; Li, Xiaoguang ; Wang, Yan ; Chen, Meng ; Pang, Guijian ; Qian, Fangsheng ; Zhou, Ye ; Han, Su‐Ting</creator><creatorcontrib>Wang, Junjie ; Lv, Ziyu ; Xing, Xuechao ; Li, Xiaoguang ; Wang, Yan ; Chen, Meng ; Pang, Guijian ; Qian, Fangsheng ; Zhou, Ye ; Han, Su‐Ting</creatorcontrib><description>The threshold switching (TS) phenomenon in memristors has drawn great attention for its versatile applications in selectors, artificial neurons, true random number generators, and electronic integrations. The transition between nonvolatile resistive switching and volatile TS modes can be realized by doping, varying annealing and voltage sweeping conditions, or imposing different compliance current. Here, a strategy is reported to achieve such transition by the noninvasive UV light stimulus based on InP/ZnS quantum dot (QD) memristor. The core–shell InP/ZnS QDs with quasi‐type II band alignment ensures photoexcited electrons localized in InP core, photoexcited hole state distributed in the outer shell, and subsequent lifetime controlling of conductive filament under light irradiation. Systematic mechanism investigations indicate that UV photogenerated holes are accumulated on the surface of the QD film, which is consistent with rapid transfer of photogenerated holes in the core–shell InP/ZnS structure. Based on the light‐modulated effect, a reconfigurable 9 × 9 visual data storage array with a key pattern and a simple leaky integrate‐and‐fire circuit are constructed. These results suggest the potential of direct optical modulation of memory mode through energy band engineering, leading to future optoelectronic and electronic device for the implementation of neuromorphic visual system and artificial neural networks.
Optically modulated threshold switching is realized in a core–shell quantum dot based memristor. A reconfigurable 9 × 9 visual data storage array with a key pattern and a simple leaky integrate‐and‐fire circuit are further constructed. These results can lead to future optoelectronic and electronic device for the implementation of neuromorphic visual system and artificial neural networks.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201909114</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Artificial neural networks ; Circuits ; Data storage ; Energy bands ; functional memristors ; Light irradiation ; light modulation ; Materials science ; Memory devices ; Memristors ; Optical memory (data storage) ; Optoelectronic devices ; Quantum dots ; Random numbers ; Selectors ; Switching theory ; Ultraviolet radiation ; volatile threshold switching ; Zinc sulfide</subject><ispartof>Advanced functional materials, 2020-04, Vol.30 (16), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3174-cd698d45284a3e9b23efaa2fab1ee629703bcaf0cbd79d5f99390af9e095de573</citedby><cites>FETCH-LOGICAL-c3174-cd698d45284a3e9b23efaa2fab1ee629703bcaf0cbd79d5f99390af9e095de573</cites><orcidid>0000-0003-3392-7569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201909114$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201909114$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wang, Junjie</creatorcontrib><creatorcontrib>Lv, Ziyu</creatorcontrib><creatorcontrib>Xing, Xuechao</creatorcontrib><creatorcontrib>Li, Xiaoguang</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Chen, Meng</creatorcontrib><creatorcontrib>Pang, Guijian</creatorcontrib><creatorcontrib>Qian, Fangsheng</creatorcontrib><creatorcontrib>Zhou, Ye</creatorcontrib><creatorcontrib>Han, Su‐Ting</creatorcontrib><title>Optically Modulated Threshold Switching in Core–Shell Quantum Dot Based Memristive Device</title><title>Advanced functional materials</title><description>The threshold switching (TS) phenomenon in memristors has drawn great attention for its versatile applications in selectors, artificial neurons, true random number generators, and electronic integrations. The transition between nonvolatile resistive switching and volatile TS modes can be realized by doping, varying annealing and voltage sweeping conditions, or imposing different compliance current. Here, a strategy is reported to achieve such transition by the noninvasive UV light stimulus based on InP/ZnS quantum dot (QD) memristor. The core–shell InP/ZnS QDs with quasi‐type II band alignment ensures photoexcited electrons localized in InP core, photoexcited hole state distributed in the outer shell, and subsequent lifetime controlling of conductive filament under light irradiation. Systematic mechanism investigations indicate that UV photogenerated holes are accumulated on the surface of the QD film, which is consistent with rapid transfer of photogenerated holes in the core–shell InP/ZnS structure. Based on the light‐modulated effect, a reconfigurable 9 × 9 visual data storage array with a key pattern and a simple leaky integrate‐and‐fire circuit are constructed. These results suggest the potential of direct optical modulation of memory mode through energy band engineering, leading to future optoelectronic and electronic device for the implementation of neuromorphic visual system and artificial neural networks.
Optically modulated threshold switching is realized in a core–shell quantum dot based memristor. A reconfigurable 9 × 9 visual data storage array with a key pattern and a simple leaky integrate‐and‐fire circuit are further constructed. These results can lead to future optoelectronic and electronic device for the implementation of neuromorphic visual system and artificial neural networks.</description><subject>Artificial neural networks</subject><subject>Circuits</subject><subject>Data storage</subject><subject>Energy bands</subject><subject>functional memristors</subject><subject>Light irradiation</subject><subject>light modulation</subject><subject>Materials science</subject><subject>Memory devices</subject><subject>Memristors</subject><subject>Optical memory (data storage)</subject><subject>Optoelectronic devices</subject><subject>Quantum dots</subject><subject>Random numbers</subject><subject>Selectors</subject><subject>Switching theory</subject><subject>Ultraviolet radiation</subject><subject>volatile threshold switching</subject><subject>Zinc sulfide</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAUgIMoOKdXzwHPnUnTXznOzamwMWQTBA8lbV5sRtrOpN3Yzf_B_9C_xI7JPHp67_B978GH0DUlA0qIfyukKgc-oZxwSoMT1KMRjTxG_OT0uNPXc3Th3IoQGscs6KG3-brRuTBmh2e1bI1oQOJlYcEVtZF4sdVNXujqHesKj2oL359fiwKMwc-tqJq2xOO6wXfCddYMSqtdozeAx7DROVyiMyWMg6vf2Ucvk_vl6NGbzh-eRsOplzMaB14uI57IIPSTQDDgmc9ACeErkVGAyOcxYVkuFMkzGXMZKs4ZJ0JxIDyUEMasj24Od9e2_mjBNemqbm3VvUx9xilPWMBZRw0OVG5r5yyodG11KewupSTdB0z3AdNjwE7gB2GrDez-odPheDL7c38A8X92mg</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Wang, Junjie</creator><creator>Lv, Ziyu</creator><creator>Xing, Xuechao</creator><creator>Li, Xiaoguang</creator><creator>Wang, Yan</creator><creator>Chen, Meng</creator><creator>Pang, Guijian</creator><creator>Qian, Fangsheng</creator><creator>Zhou, Ye</creator><creator>Han, Su‐Ting</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3392-7569</orcidid></search><sort><creationdate>20200401</creationdate><title>Optically Modulated Threshold Switching in Core–Shell Quantum Dot Based Memristive Device</title><author>Wang, Junjie ; Lv, Ziyu ; Xing, Xuechao ; Li, Xiaoguang ; Wang, Yan ; Chen, Meng ; Pang, Guijian ; Qian, Fangsheng ; Zhou, Ye ; Han, Su‐Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3174-cd698d45284a3e9b23efaa2fab1ee629703bcaf0cbd79d5f99390af9e095de573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Circuits</topic><topic>Data storage</topic><topic>Energy bands</topic><topic>functional memristors</topic><topic>Light irradiation</topic><topic>light modulation</topic><topic>Materials science</topic><topic>Memory devices</topic><topic>Memristors</topic><topic>Optical memory (data storage)</topic><topic>Optoelectronic devices</topic><topic>Quantum dots</topic><topic>Random numbers</topic><topic>Selectors</topic><topic>Switching theory</topic><topic>Ultraviolet radiation</topic><topic>volatile threshold switching</topic><topic>Zinc sulfide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Junjie</creatorcontrib><creatorcontrib>Lv, Ziyu</creatorcontrib><creatorcontrib>Xing, Xuechao</creatorcontrib><creatorcontrib>Li, Xiaoguang</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Chen, Meng</creatorcontrib><creatorcontrib>Pang, Guijian</creatorcontrib><creatorcontrib>Qian, Fangsheng</creatorcontrib><creatorcontrib>Zhou, Ye</creatorcontrib><creatorcontrib>Han, Su‐Ting</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Junjie</au><au>Lv, Ziyu</au><au>Xing, Xuechao</au><au>Li, Xiaoguang</au><au>Wang, Yan</au><au>Chen, Meng</au><au>Pang, Guijian</au><au>Qian, Fangsheng</au><au>Zhou, Ye</au><au>Han, Su‐Ting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optically Modulated Threshold Switching in Core–Shell Quantum Dot Based Memristive Device</atitle><jtitle>Advanced functional materials</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>30</volume><issue>16</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The threshold switching (TS) phenomenon in memristors has drawn great attention for its versatile applications in selectors, artificial neurons, true random number generators, and electronic integrations. The transition between nonvolatile resistive switching and volatile TS modes can be realized by doping, varying annealing and voltage sweeping conditions, or imposing different compliance current. Here, a strategy is reported to achieve such transition by the noninvasive UV light stimulus based on InP/ZnS quantum dot (QD) memristor. The core–shell InP/ZnS QDs with quasi‐type II band alignment ensures photoexcited electrons localized in InP core, photoexcited hole state distributed in the outer shell, and subsequent lifetime controlling of conductive filament under light irradiation. Systematic mechanism investigations indicate that UV photogenerated holes are accumulated on the surface of the QD film, which is consistent with rapid transfer of photogenerated holes in the core–shell InP/ZnS structure. Based on the light‐modulated effect, a reconfigurable 9 × 9 visual data storage array with a key pattern and a simple leaky integrate‐and‐fire circuit are constructed. These results suggest the potential of direct optical modulation of memory mode through energy band engineering, leading to future optoelectronic and electronic device for the implementation of neuromorphic visual system and artificial neural networks.
Optically modulated threshold switching is realized in a core–shell quantum dot based memristor. A reconfigurable 9 × 9 visual data storage array with a key pattern and a simple leaky integrate‐and‐fire circuit are further constructed. These results can lead to future optoelectronic and electronic device for the implementation of neuromorphic visual system and artificial neural networks.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201909114</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3392-7569</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-04, Vol.30 (16), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2391983493 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Artificial neural networks Circuits Data storage Energy bands functional memristors Light irradiation light modulation Materials science Memory devices Memristors Optical memory (data storage) Optoelectronic devices Quantum dots Random numbers Selectors Switching theory Ultraviolet radiation volatile threshold switching Zinc sulfide |
title | Optically Modulated Threshold Switching in Core–Shell Quantum Dot Based Memristive Device |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A03%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optically%20Modulated%20Threshold%20Switching%20in%20Core%E2%80%93Shell%20Quantum%20Dot%20Based%20Memristive%20Device&rft.jtitle=Advanced%20functional%20materials&rft.au=Wang,%20Junjie&rft.date=2020-04-01&rft.volume=30&rft.issue=16&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201909114&rft_dat=%3Cproquest_cross%3E2391983493%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2391983493&rft_id=info:pmid/&rfr_iscdi=true |