Optically Modulated Threshold Switching in Core–Shell Quantum Dot Based Memristive Device

The threshold switching (TS) phenomenon in memristors has drawn great attention for its versatile applications in selectors, artificial neurons, true random number generators, and electronic integrations. The transition between nonvolatile resistive switching and volatile TS modes can be realized by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-04, Vol.30 (16), p.n/a
Hauptverfasser: Wang, Junjie, Lv, Ziyu, Xing, Xuechao, Li, Xiaoguang, Wang, Yan, Chen, Meng, Pang, Guijian, Qian, Fangsheng, Zhou, Ye, Han, Su‐Ting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 16
container_start_page
container_title Advanced functional materials
container_volume 30
creator Wang, Junjie
Lv, Ziyu
Xing, Xuechao
Li, Xiaoguang
Wang, Yan
Chen, Meng
Pang, Guijian
Qian, Fangsheng
Zhou, Ye
Han, Su‐Ting
description The threshold switching (TS) phenomenon in memristors has drawn great attention for its versatile applications in selectors, artificial neurons, true random number generators, and electronic integrations. The transition between nonvolatile resistive switching and volatile TS modes can be realized by doping, varying annealing and voltage sweeping conditions, or imposing different compliance current. Here, a strategy is reported to achieve such transition by the noninvasive UV light stimulus based on InP/ZnS quantum dot (QD) memristor. The core–shell InP/ZnS QDs with quasi‐type II band alignment ensures photoexcited electrons localized in InP core, photoexcited hole state distributed in the outer shell, and subsequent lifetime controlling of conductive filament under light irradiation. Systematic mechanism investigations indicate that UV photogenerated holes are accumulated on the surface of the QD film, which is consistent with rapid transfer of photogenerated holes in the core–shell InP/ZnS structure. Based on the light‐modulated effect, a reconfigurable 9 × 9 visual data storage array with a key pattern and a simple leaky integrate‐and‐fire circuit are constructed. These results suggest the potential of direct optical modulation of memory mode through energy band engineering, leading to future optoelectronic and electronic device for the implementation of neuromorphic visual system and artificial neural networks. Optically modulated threshold switching is realized in a core–shell quantum dot based memristor. A reconfigurable 9 × 9 visual data storage array with a key pattern and a simple leaky integrate‐and‐fire circuit are further constructed. These results can lead to future optoelectronic and electronic device for the implementation of neuromorphic visual system and artificial neural networks.
doi_str_mv 10.1002/adfm.201909114
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2391983493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2391983493</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3174-cd698d45284a3e9b23efaa2fab1ee629703bcaf0cbd79d5f99390af9e095de573</originalsourceid><addsrcrecordid>eNqFkM9LwzAUgIMoOKdXzwHPnUnTXznOzamwMWQTBA8lbV5sRtrOpN3Yzf_B_9C_xI7JPHp67_B978GH0DUlA0qIfyukKgc-oZxwSoMT1KMRjTxG_OT0uNPXc3Th3IoQGscs6KG3-brRuTBmh2e1bI1oQOJlYcEVtZF4sdVNXujqHesKj2oL359fiwKMwc-tqJq2xOO6wXfCddYMSqtdozeAx7DROVyiMyWMg6vf2Ucvk_vl6NGbzh-eRsOplzMaB14uI57IIPSTQDDgmc9ACeErkVGAyOcxYVkuFMkzGXMZKs4ZJ0JxIDyUEMasj24Od9e2_mjBNemqbm3VvUx9xilPWMBZRw0OVG5r5yyodG11KewupSTdB0z3AdNjwE7gB2GrDez-odPheDL7c38A8X92mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391983493</pqid></control><display><type>article</type><title>Optically Modulated Threshold Switching in Core–Shell Quantum Dot Based Memristive Device</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Wang, Junjie ; Lv, Ziyu ; Xing, Xuechao ; Li, Xiaoguang ; Wang, Yan ; Chen, Meng ; Pang, Guijian ; Qian, Fangsheng ; Zhou, Ye ; Han, Su‐Ting</creator><creatorcontrib>Wang, Junjie ; Lv, Ziyu ; Xing, Xuechao ; Li, Xiaoguang ; Wang, Yan ; Chen, Meng ; Pang, Guijian ; Qian, Fangsheng ; Zhou, Ye ; Han, Su‐Ting</creatorcontrib><description>The threshold switching (TS) phenomenon in memristors has drawn great attention for its versatile applications in selectors, artificial neurons, true random number generators, and electronic integrations. The transition between nonvolatile resistive switching and volatile TS modes can be realized by doping, varying annealing and voltage sweeping conditions, or imposing different compliance current. Here, a strategy is reported to achieve such transition by the noninvasive UV light stimulus based on InP/ZnS quantum dot (QD) memristor. The core–shell InP/ZnS QDs with quasi‐type II band alignment ensures photoexcited electrons localized in InP core, photoexcited hole state distributed in the outer shell, and subsequent lifetime controlling of conductive filament under light irradiation. Systematic mechanism investigations indicate that UV photogenerated holes are accumulated on the surface of the QD film, which is consistent with rapid transfer of photogenerated holes in the core–shell InP/ZnS structure. Based on the light‐modulated effect, a reconfigurable 9 × 9 visual data storage array with a key pattern and a simple leaky integrate‐and‐fire circuit are constructed. These results suggest the potential of direct optical modulation of memory mode through energy band engineering, leading to future optoelectronic and electronic device for the implementation of neuromorphic visual system and artificial neural networks. Optically modulated threshold switching is realized in a core–shell quantum dot based memristor. A reconfigurable 9 × 9 visual data storage array with a key pattern and a simple leaky integrate‐and‐fire circuit are further constructed. These results can lead to future optoelectronic and electronic device for the implementation of neuromorphic visual system and artificial neural networks.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201909114</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Artificial neural networks ; Circuits ; Data storage ; Energy bands ; functional memristors ; Light irradiation ; light modulation ; Materials science ; Memory devices ; Memristors ; Optical memory (data storage) ; Optoelectronic devices ; Quantum dots ; Random numbers ; Selectors ; Switching theory ; Ultraviolet radiation ; volatile threshold switching ; Zinc sulfide</subject><ispartof>Advanced functional materials, 2020-04, Vol.30 (16), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3174-cd698d45284a3e9b23efaa2fab1ee629703bcaf0cbd79d5f99390af9e095de573</citedby><cites>FETCH-LOGICAL-c3174-cd698d45284a3e9b23efaa2fab1ee629703bcaf0cbd79d5f99390af9e095de573</cites><orcidid>0000-0003-3392-7569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201909114$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201909114$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wang, Junjie</creatorcontrib><creatorcontrib>Lv, Ziyu</creatorcontrib><creatorcontrib>Xing, Xuechao</creatorcontrib><creatorcontrib>Li, Xiaoguang</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Chen, Meng</creatorcontrib><creatorcontrib>Pang, Guijian</creatorcontrib><creatorcontrib>Qian, Fangsheng</creatorcontrib><creatorcontrib>Zhou, Ye</creatorcontrib><creatorcontrib>Han, Su‐Ting</creatorcontrib><title>Optically Modulated Threshold Switching in Core–Shell Quantum Dot Based Memristive Device</title><title>Advanced functional materials</title><description>The threshold switching (TS) phenomenon in memristors has drawn great attention for its versatile applications in selectors, artificial neurons, true random number generators, and electronic integrations. The transition between nonvolatile resistive switching and volatile TS modes can be realized by doping, varying annealing and voltage sweeping conditions, or imposing different compliance current. Here, a strategy is reported to achieve such transition by the noninvasive UV light stimulus based on InP/ZnS quantum dot (QD) memristor. The core–shell InP/ZnS QDs with quasi‐type II band alignment ensures photoexcited electrons localized in InP core, photoexcited hole state distributed in the outer shell, and subsequent lifetime controlling of conductive filament under light irradiation. Systematic mechanism investigations indicate that UV photogenerated holes are accumulated on the surface of the QD film, which is consistent with rapid transfer of photogenerated holes in the core–shell InP/ZnS structure. Based on the light‐modulated effect, a reconfigurable 9 × 9 visual data storage array with a key pattern and a simple leaky integrate‐and‐fire circuit are constructed. These results suggest the potential of direct optical modulation of memory mode through energy band engineering, leading to future optoelectronic and electronic device for the implementation of neuromorphic visual system and artificial neural networks. Optically modulated threshold switching is realized in a core–shell quantum dot based memristor. A reconfigurable 9 × 9 visual data storage array with a key pattern and a simple leaky integrate‐and‐fire circuit are further constructed. These results can lead to future optoelectronic and electronic device for the implementation of neuromorphic visual system and artificial neural networks.</description><subject>Artificial neural networks</subject><subject>Circuits</subject><subject>Data storage</subject><subject>Energy bands</subject><subject>functional memristors</subject><subject>Light irradiation</subject><subject>light modulation</subject><subject>Materials science</subject><subject>Memory devices</subject><subject>Memristors</subject><subject>Optical memory (data storage)</subject><subject>Optoelectronic devices</subject><subject>Quantum dots</subject><subject>Random numbers</subject><subject>Selectors</subject><subject>Switching theory</subject><subject>Ultraviolet radiation</subject><subject>volatile threshold switching</subject><subject>Zinc sulfide</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAUgIMoOKdXzwHPnUnTXznOzamwMWQTBA8lbV5sRtrOpN3Yzf_B_9C_xI7JPHp67_B978GH0DUlA0qIfyukKgc-oZxwSoMT1KMRjTxG_OT0uNPXc3Th3IoQGscs6KG3-brRuTBmh2e1bI1oQOJlYcEVtZF4sdVNXujqHesKj2oL359fiwKMwc-tqJq2xOO6wXfCddYMSqtdozeAx7DROVyiMyWMg6vf2Ucvk_vl6NGbzh-eRsOplzMaB14uI57IIPSTQDDgmc9ACeErkVGAyOcxYVkuFMkzGXMZKs4ZJ0JxIDyUEMasj24Od9e2_mjBNemqbm3VvUx9xilPWMBZRw0OVG5r5yyodG11KewupSTdB0z3AdNjwE7gB2GrDez-odPheDL7c38A8X92mg</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Wang, Junjie</creator><creator>Lv, Ziyu</creator><creator>Xing, Xuechao</creator><creator>Li, Xiaoguang</creator><creator>Wang, Yan</creator><creator>Chen, Meng</creator><creator>Pang, Guijian</creator><creator>Qian, Fangsheng</creator><creator>Zhou, Ye</creator><creator>Han, Su‐Ting</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3392-7569</orcidid></search><sort><creationdate>20200401</creationdate><title>Optically Modulated Threshold Switching in Core–Shell Quantum Dot Based Memristive Device</title><author>Wang, Junjie ; Lv, Ziyu ; Xing, Xuechao ; Li, Xiaoguang ; Wang, Yan ; Chen, Meng ; Pang, Guijian ; Qian, Fangsheng ; Zhou, Ye ; Han, Su‐Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3174-cd698d45284a3e9b23efaa2fab1ee629703bcaf0cbd79d5f99390af9e095de573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Circuits</topic><topic>Data storage</topic><topic>Energy bands</topic><topic>functional memristors</topic><topic>Light irradiation</topic><topic>light modulation</topic><topic>Materials science</topic><topic>Memory devices</topic><topic>Memristors</topic><topic>Optical memory (data storage)</topic><topic>Optoelectronic devices</topic><topic>Quantum dots</topic><topic>Random numbers</topic><topic>Selectors</topic><topic>Switching theory</topic><topic>Ultraviolet radiation</topic><topic>volatile threshold switching</topic><topic>Zinc sulfide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Junjie</creatorcontrib><creatorcontrib>Lv, Ziyu</creatorcontrib><creatorcontrib>Xing, Xuechao</creatorcontrib><creatorcontrib>Li, Xiaoguang</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Chen, Meng</creatorcontrib><creatorcontrib>Pang, Guijian</creatorcontrib><creatorcontrib>Qian, Fangsheng</creatorcontrib><creatorcontrib>Zhou, Ye</creatorcontrib><creatorcontrib>Han, Su‐Ting</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Junjie</au><au>Lv, Ziyu</au><au>Xing, Xuechao</au><au>Li, Xiaoguang</au><au>Wang, Yan</au><au>Chen, Meng</au><au>Pang, Guijian</au><au>Qian, Fangsheng</au><au>Zhou, Ye</au><au>Han, Su‐Ting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optically Modulated Threshold Switching in Core–Shell Quantum Dot Based Memristive Device</atitle><jtitle>Advanced functional materials</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>30</volume><issue>16</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The threshold switching (TS) phenomenon in memristors has drawn great attention for its versatile applications in selectors, artificial neurons, true random number generators, and electronic integrations. The transition between nonvolatile resistive switching and volatile TS modes can be realized by doping, varying annealing and voltage sweeping conditions, or imposing different compliance current. Here, a strategy is reported to achieve such transition by the noninvasive UV light stimulus based on InP/ZnS quantum dot (QD) memristor. The core–shell InP/ZnS QDs with quasi‐type II band alignment ensures photoexcited electrons localized in InP core, photoexcited hole state distributed in the outer shell, and subsequent lifetime controlling of conductive filament under light irradiation. Systematic mechanism investigations indicate that UV photogenerated holes are accumulated on the surface of the QD film, which is consistent with rapid transfer of photogenerated holes in the core–shell InP/ZnS structure. Based on the light‐modulated effect, a reconfigurable 9 × 9 visual data storage array with a key pattern and a simple leaky integrate‐and‐fire circuit are constructed. These results suggest the potential of direct optical modulation of memory mode through energy band engineering, leading to future optoelectronic and electronic device for the implementation of neuromorphic visual system and artificial neural networks. Optically modulated threshold switching is realized in a core–shell quantum dot based memristor. A reconfigurable 9 × 9 visual data storage array with a key pattern and a simple leaky integrate‐and‐fire circuit are further constructed. These results can lead to future optoelectronic and electronic device for the implementation of neuromorphic visual system and artificial neural networks.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201909114</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3392-7569</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-04, Vol.30 (16), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2391983493
source Wiley Online Library - AutoHoldings Journals
subjects Artificial neural networks
Circuits
Data storage
Energy bands
functional memristors
Light irradiation
light modulation
Materials science
Memory devices
Memristors
Optical memory (data storage)
Optoelectronic devices
Quantum dots
Random numbers
Selectors
Switching theory
Ultraviolet radiation
volatile threshold switching
Zinc sulfide
title Optically Modulated Threshold Switching in Core–Shell Quantum Dot Based Memristive Device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A03%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optically%20Modulated%20Threshold%20Switching%20in%20Core%E2%80%93Shell%20Quantum%20Dot%20Based%20Memristive%20Device&rft.jtitle=Advanced%20functional%20materials&rft.au=Wang,%20Junjie&rft.date=2020-04-01&rft.volume=30&rft.issue=16&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201909114&rft_dat=%3Cproquest_cross%3E2391983493%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2391983493&rft_id=info:pmid/&rfr_iscdi=true