Uniformly Confined Germanium Quantum Dots in 3D Ordered Porous Carbon Framework for High‐Performance Li‐ion Battery
Although abundant germanium (Ge)‐based anode materials have been explored to obtain high specific capacity, high rate performance, and long charge/discharge lifespans for lithium‐ion batteries (LIBs), their performances are still far from satisfactory due to the intrinsic defects of Ge and the relat...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2020-04, Vol.30 (16), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 16 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | Wang, Yan Luo, Sainan Chen, Min Wu, Limin |
description | Although abundant germanium (Ge)‐based anode materials have been explored to obtain high specific capacity, high rate performance, and long charge/discharge lifespans for lithium‐ion batteries (LIBs), their performances are still far from satisfactory due to the intrinsic defects of Ge and the relatively intricate anode structure. To work out these issues, a 3D ordered porous N‐doped carbon framework with Ge quantum dots uniformly embedded (3DOP Ge@NC) as a binder‐free anode for LIBs via a facile polystyrene colloidal nanospheres template‐confined strategy is proposed. This unique structure not only facilitates Li‐ion diffusion and electron transport that can guarantee rapid de/alloying reaction, but also alleviates the huge volume changes during reactions and improves cycling stability. Notably, the resulting anode delivers a high specific reversible capacity (≈1160 mA h g−1 at 1 A g−1), superior rate properties (exceeding 500 mA h g−1 at 40 A g−1), and excellent cycling stability (over 90% capacity retention after 1200 cycles even at 5 A g−1). Furthermore, both the 3DOP Ge@NC anode with high areal mass loading (up to 8 mg cm−2) and the full cell coupled with LiFePO4 cathode display high capacity and cycling stability, further indicative of the favorable real‐life application prospects for high‐energy LIBs.
A novel binder‐free anode comprising Ge quantum dots uniformly embedded in a 3D ordered porous carbon framework is fabricated. The unique structure can simultaneously facilitate Li+ diffusion/electron transport and efficiently alleviate the volume expansion during the alloying reaction, leading to excellent electrochemical performance and particularly outstanding high‐rate cycling stability. |
doi_str_mv | 10.1002/adfm.202000373 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2391983441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2391983441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3563-b3915dcd7c484f072568a726213440563702b4e07eb8ca6623470e68c690555d3</originalsourceid><addsrcrecordid>eNqFkEFLwzAUx4MoOKdXzwHPnS9Jm7THublNmGyCA28lbVPNXJOZtoze_Ah-Rj-JGZN59PQej9__9-CP0DWBAQGgt7IoqwEFCgBMsBPUI5zwgAGNT487eTlHF3W9BiBCsLCHdiujS-uqTYdH1pTaqAJPlauk0W2Fn1ppGj_HtqmxNpiN8cIVynloaZ1tazySLrMGT5ys1M66d-xleKZf374_v5bK7dXS5ArPtT9oT97JplGuu0RnpdzU6up39tFqcv88mgXzxfRhNJwHOYs4CzKWkKjIC5GHcViCoBGPpaCcEhaG4AkBNAsVCJXFueScslCA4nHOE4iiqGB9dHPwbp39aFXdpGvbOuNfptS7k9h7iKcGByp3tq6dKtOt05V0XUog3Zeb7stNj-X6QHII7PRGdf_Q6XA8efzL_gBAgX7O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391983441</pqid></control><display><type>article</type><title>Uniformly Confined Germanium Quantum Dots in 3D Ordered Porous Carbon Framework for High‐Performance Li‐ion Battery</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Yan ; Luo, Sainan ; Chen, Min ; Wu, Limin</creator><creatorcontrib>Wang, Yan ; Luo, Sainan ; Chen, Min ; Wu, Limin</creatorcontrib><description>Although abundant germanium (Ge)‐based anode materials have been explored to obtain high specific capacity, high rate performance, and long charge/discharge lifespans for lithium‐ion batteries (LIBs), their performances are still far from satisfactory due to the intrinsic defects of Ge and the relatively intricate anode structure. To work out these issues, a 3D ordered porous N‐doped carbon framework with Ge quantum dots uniformly embedded (3DOP Ge@NC) as a binder‐free anode for LIBs via a facile polystyrene colloidal nanospheres template‐confined strategy is proposed. This unique structure not only facilitates Li‐ion diffusion and electron transport that can guarantee rapid de/alloying reaction, but also alleviates the huge volume changes during reactions and improves cycling stability. Notably, the resulting anode delivers a high specific reversible capacity (≈1160 mA h g−1 at 1 A g−1), superior rate properties (exceeding 500 mA h g−1 at 40 A g−1), and excellent cycling stability (over 90% capacity retention after 1200 cycles even at 5 A g−1). Furthermore, both the 3DOP Ge@NC anode with high areal mass loading (up to 8 mg cm−2) and the full cell coupled with LiFePO4 cathode display high capacity and cycling stability, further indicative of the favorable real‐life application prospects for high‐energy LIBs.
A novel binder‐free anode comprising Ge quantum dots uniformly embedded in a 3D ordered porous carbon framework is fabricated. The unique structure can simultaneously facilitate Li+ diffusion/electron transport and efficiently alleviate the volume expansion during the alloying reaction, leading to excellent electrochemical performance and particularly outstanding high‐rate cycling stability.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202000373</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>3D ordered porous carbon ; Anodes ; Carbon ; Electrode materials ; Electron transport ; facilitated alloying reactions ; Ge quantum dots ; Germanium ; Ion diffusion ; Lithium-ion batteries ; Materials science ; Nanospheres ; Polystyrene resins ; Quantum dots ; Stability</subject><ispartof>Advanced functional materials, 2020-04, Vol.30 (16), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3563-b3915dcd7c484f072568a726213440563702b4e07eb8ca6623470e68c690555d3</citedby><cites>FETCH-LOGICAL-c3563-b3915dcd7c484f072568a726213440563702b4e07eb8ca6623470e68c690555d3</cites><orcidid>0000-0002-6422-9942</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202000373$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202000373$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Luo, Sainan</creatorcontrib><creatorcontrib>Chen, Min</creatorcontrib><creatorcontrib>Wu, Limin</creatorcontrib><title>Uniformly Confined Germanium Quantum Dots in 3D Ordered Porous Carbon Framework for High‐Performance Li‐ion Battery</title><title>Advanced functional materials</title><description>Although abundant germanium (Ge)‐based anode materials have been explored to obtain high specific capacity, high rate performance, and long charge/discharge lifespans for lithium‐ion batteries (LIBs), their performances are still far from satisfactory due to the intrinsic defects of Ge and the relatively intricate anode structure. To work out these issues, a 3D ordered porous N‐doped carbon framework with Ge quantum dots uniformly embedded (3DOP Ge@NC) as a binder‐free anode for LIBs via a facile polystyrene colloidal nanospheres template‐confined strategy is proposed. This unique structure not only facilitates Li‐ion diffusion and electron transport that can guarantee rapid de/alloying reaction, but also alleviates the huge volume changes during reactions and improves cycling stability. Notably, the resulting anode delivers a high specific reversible capacity (≈1160 mA h g−1 at 1 A g−1), superior rate properties (exceeding 500 mA h g−1 at 40 A g−1), and excellent cycling stability (over 90% capacity retention after 1200 cycles even at 5 A g−1). Furthermore, both the 3DOP Ge@NC anode with high areal mass loading (up to 8 mg cm−2) and the full cell coupled with LiFePO4 cathode display high capacity and cycling stability, further indicative of the favorable real‐life application prospects for high‐energy LIBs.
A novel binder‐free anode comprising Ge quantum dots uniformly embedded in a 3D ordered porous carbon framework is fabricated. The unique structure can simultaneously facilitate Li+ diffusion/electron transport and efficiently alleviate the volume expansion during the alloying reaction, leading to excellent electrochemical performance and particularly outstanding high‐rate cycling stability.</description><subject>3D ordered porous carbon</subject><subject>Anodes</subject><subject>Carbon</subject><subject>Electrode materials</subject><subject>Electron transport</subject><subject>facilitated alloying reactions</subject><subject>Ge quantum dots</subject><subject>Germanium</subject><subject>Ion diffusion</subject><subject>Lithium-ion batteries</subject><subject>Materials science</subject><subject>Nanospheres</subject><subject>Polystyrene resins</subject><subject>Quantum dots</subject><subject>Stability</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLwzAUx4MoOKdXzwHPnS9Jm7THublNmGyCA28lbVPNXJOZtoze_Ah-Rj-JGZN59PQej9__9-CP0DWBAQGgt7IoqwEFCgBMsBPUI5zwgAGNT487eTlHF3W9BiBCsLCHdiujS-uqTYdH1pTaqAJPlauk0W2Fn1ppGj_HtqmxNpiN8cIVynloaZ1tazySLrMGT5ys1M66d-xleKZf374_v5bK7dXS5ArPtT9oT97JplGuu0RnpdzU6up39tFqcv88mgXzxfRhNJwHOYs4CzKWkKjIC5GHcViCoBGPpaCcEhaG4AkBNAsVCJXFueScslCA4nHOE4iiqGB9dHPwbp39aFXdpGvbOuNfptS7k9h7iKcGByp3tq6dKtOt05V0XUog3Zeb7stNj-X6QHII7PRGdf_Q6XA8efzL_gBAgX7O</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Wang, Yan</creator><creator>Luo, Sainan</creator><creator>Chen, Min</creator><creator>Wu, Limin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6422-9942</orcidid></search><sort><creationdate>20200401</creationdate><title>Uniformly Confined Germanium Quantum Dots in 3D Ordered Porous Carbon Framework for High‐Performance Li‐ion Battery</title><author>Wang, Yan ; Luo, Sainan ; Chen, Min ; Wu, Limin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3563-b3915dcd7c484f072568a726213440563702b4e07eb8ca6623470e68c690555d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3D ordered porous carbon</topic><topic>Anodes</topic><topic>Carbon</topic><topic>Electrode materials</topic><topic>Electron transport</topic><topic>facilitated alloying reactions</topic><topic>Ge quantum dots</topic><topic>Germanium</topic><topic>Ion diffusion</topic><topic>Lithium-ion batteries</topic><topic>Materials science</topic><topic>Nanospheres</topic><topic>Polystyrene resins</topic><topic>Quantum dots</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Luo, Sainan</creatorcontrib><creatorcontrib>Chen, Min</creatorcontrib><creatorcontrib>Wu, Limin</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yan</au><au>Luo, Sainan</au><au>Chen, Min</au><au>Wu, Limin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniformly Confined Germanium Quantum Dots in 3D Ordered Porous Carbon Framework for High‐Performance Li‐ion Battery</atitle><jtitle>Advanced functional materials</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>30</volume><issue>16</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Although abundant germanium (Ge)‐based anode materials have been explored to obtain high specific capacity, high rate performance, and long charge/discharge lifespans for lithium‐ion batteries (LIBs), their performances are still far from satisfactory due to the intrinsic defects of Ge and the relatively intricate anode structure. To work out these issues, a 3D ordered porous N‐doped carbon framework with Ge quantum dots uniformly embedded (3DOP Ge@NC) as a binder‐free anode for LIBs via a facile polystyrene colloidal nanospheres template‐confined strategy is proposed. This unique structure not only facilitates Li‐ion diffusion and electron transport that can guarantee rapid de/alloying reaction, but also alleviates the huge volume changes during reactions and improves cycling stability. Notably, the resulting anode delivers a high specific reversible capacity (≈1160 mA h g−1 at 1 A g−1), superior rate properties (exceeding 500 mA h g−1 at 40 A g−1), and excellent cycling stability (over 90% capacity retention after 1200 cycles even at 5 A g−1). Furthermore, both the 3DOP Ge@NC anode with high areal mass loading (up to 8 mg cm−2) and the full cell coupled with LiFePO4 cathode display high capacity and cycling stability, further indicative of the favorable real‐life application prospects for high‐energy LIBs.
A novel binder‐free anode comprising Ge quantum dots uniformly embedded in a 3D ordered porous carbon framework is fabricated. The unique structure can simultaneously facilitate Li+ diffusion/electron transport and efficiently alleviate the volume expansion during the alloying reaction, leading to excellent electrochemical performance and particularly outstanding high‐rate cycling stability.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202000373</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6422-9942</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-04, Vol.30 (16), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2391983441 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 3D ordered porous carbon Anodes Carbon Electrode materials Electron transport facilitated alloying reactions Ge quantum dots Germanium Ion diffusion Lithium-ion batteries Materials science Nanospheres Polystyrene resins Quantum dots Stability |
title | Uniformly Confined Germanium Quantum Dots in 3D Ordered Porous Carbon Framework for High‐Performance Li‐ion Battery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A18%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniformly%20Confined%20Germanium%20Quantum%20Dots%20in%203D%20Ordered%20Porous%20Carbon%20Framework%20for%20High%E2%80%90Performance%20Li%E2%80%90ion%20Battery&rft.jtitle=Advanced%20functional%20materials&rft.au=Wang,%20Yan&rft.date=2020-04-01&rft.volume=30&rft.issue=16&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202000373&rft_dat=%3Cproquest_cross%3E2391983441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2391983441&rft_id=info:pmid/&rfr_iscdi=true |