TLVANE: a two-level variation model for attributed network embedding
Network embedding aims to learn low-dimensional representations for nodes in social networks, which can serve many applications, such as node classification, link prediction and visualization. Most of network embedding methods focus on learning the representations solely from the topological structu...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2020-05, Vol.32 (9), p.4835-4847 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4847 |
---|---|
container_issue | 9 |
container_start_page | 4835 |
container_title | Neural computing & applications |
container_volume | 32 |
creator | Huang, Zhichao Li, Xutao Ye, Yunming Li, Feng Liu, Feng Yao, Yuan |
description | Network embedding aims to learn low-dimensional representations for nodes in social networks, which can serve many applications, such as node classification, link prediction and visualization. Most of network embedding methods focus on learning the representations solely from the topological structure. Recently, attributed network embedding, which utilizes both the topological structure and node content to jointly learn latent representations, becomes a hot topic. However, previous studies obtain the joint representations by directly concatenating the one from each aspect, which may lose the correlations between the topological structure and node content. In this paper, we propose a new attributed network embedding method,
TLVANE
, which can address the drawback by exploiting the deep variational autoencoders (VAEs). Particularly, a two-level VAE model is built, where the first-level accounts for the joint representations while the second for the embeddings of each aspect. Extensive experiments on three real-world datasets have been conducted, and the results demonstrate the superiority of the proposed method against state-of-the-art competitors. |
doi_str_mv | 10.1007/s00521-018-3875-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2391790682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2391790682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-fd93dc24279919cf88d3e01e1cb0675d38b80d095db7fa0738a16384e1735d473</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4C3gOTrZJJvEW6mtCkUv1WvIbrJla7upybbi25uygidPwzDf_w98CF1TuKUA8i4BiIISoIowJQURJ2hEOWOEgVCnaASa52vJ2Tm6SGkNALxUYoQelov3ycvsHlvcfwWy8Qe_wQcbW9u3ocPb4PLehIht38e22vfe4c5nNH5gv628c223ukRnjd0kf_U7x-htPltOn8ji9fF5OlmQmtGyJ43TzNUFL6TWVNeNUo55oJ7WFZRSOKYqBQ60cJVsLEimLC2Z4p5KJhyXbIxuht5dDJ97n3qzDvvY5ZemYJpKDaUqMkUHqo4hpegbs4vt1sZvQ8EcZZlBlsmyzFGWETlTDJmU2W7l41_z_6EfsIdq2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391790682</pqid></control><display><type>article</type><title>TLVANE: a two-level variation model for attributed network embedding</title><source>SpringerLink Journals - AutoHoldings</source><creator>Huang, Zhichao ; Li, Xutao ; Ye, Yunming ; Li, Feng ; Liu, Feng ; Yao, Yuan</creator><creatorcontrib>Huang, Zhichao ; Li, Xutao ; Ye, Yunming ; Li, Feng ; Liu, Feng ; Yao, Yuan</creatorcontrib><description>Network embedding aims to learn low-dimensional representations for nodes in social networks, which can serve many applications, such as node classification, link prediction and visualization. Most of network embedding methods focus on learning the representations solely from the topological structure. Recently, attributed network embedding, which utilizes both the topological structure and node content to jointly learn latent representations, becomes a hot topic. However, previous studies obtain the joint representations by directly concatenating the one from each aspect, which may lose the correlations between the topological structure and node content. In this paper, we propose a new attributed network embedding method,
TLVANE
, which can address the drawback by exploiting the deep variational autoencoders (VAEs). Particularly, a two-level VAE model is built, where the first-level accounts for the joint representations while the second for the embeddings of each aspect. Extensive experiments on three real-world datasets have been conducted, and the results demonstrate the superiority of the proposed method against state-of-the-art competitors.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-018-3875-5</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Embedding ; Image Processing and Computer Vision ; Nodes ; Original Article ; Probability and Statistics in Computer Science ; Representations ; Social networks ; Topology</subject><ispartof>Neural computing & applications, 2020-05, Vol.32 (9), p.4835-4847</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2018</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-fd93dc24279919cf88d3e01e1cb0675d38b80d095db7fa0738a16384e1735d473</citedby><cites>FETCH-LOGICAL-c316t-fd93dc24279919cf88d3e01e1cb0675d38b80d095db7fa0738a16384e1735d473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-018-3875-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-018-3875-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Huang, Zhichao</creatorcontrib><creatorcontrib>Li, Xutao</creatorcontrib><creatorcontrib>Ye, Yunming</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>Yao, Yuan</creatorcontrib><title>TLVANE: a two-level variation model for attributed network embedding</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>Network embedding aims to learn low-dimensional representations for nodes in social networks, which can serve many applications, such as node classification, link prediction and visualization. Most of network embedding methods focus on learning the representations solely from the topological structure. Recently, attributed network embedding, which utilizes both the topological structure and node content to jointly learn latent representations, becomes a hot topic. However, previous studies obtain the joint representations by directly concatenating the one from each aspect, which may lose the correlations between the topological structure and node content. In this paper, we propose a new attributed network embedding method,
TLVANE
, which can address the drawback by exploiting the deep variational autoencoders (VAEs). Particularly, a two-level VAE model is built, where the first-level accounts for the joint representations while the second for the embeddings of each aspect. Extensive experiments on three real-world datasets have been conducted, and the results demonstrate the superiority of the proposed method against state-of-the-art competitors.</description><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Embedding</subject><subject>Image Processing and Computer Vision</subject><subject>Nodes</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Representations</subject><subject>Social networks</subject><subject>Topology</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kMFKAzEQhoMoWKsP4C3gOTrZJJvEW6mtCkUv1WvIbrJla7upybbi25uygidPwzDf_w98CF1TuKUA8i4BiIISoIowJQURJ2hEOWOEgVCnaASa52vJ2Tm6SGkNALxUYoQelov3ycvsHlvcfwWy8Qe_wQcbW9u3ocPb4PLehIht38e22vfe4c5nNH5gv628c223ukRnjd0kf_U7x-htPltOn8ji9fF5OlmQmtGyJ43TzNUFL6TWVNeNUo55oJ7WFZRSOKYqBQ60cJVsLEimLC2Z4p5KJhyXbIxuht5dDJ97n3qzDvvY5ZemYJpKDaUqMkUHqo4hpegbs4vt1sZvQ8EcZZlBlsmyzFGWETlTDJmU2W7l41_z_6EfsIdq2Q</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Huang, Zhichao</creator><creator>Li, Xutao</creator><creator>Ye, Yunming</creator><creator>Li, Feng</creator><creator>Liu, Feng</creator><creator>Yao, Yuan</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20200501</creationdate><title>TLVANE: a two-level variation model for attributed network embedding</title><author>Huang, Zhichao ; Li, Xutao ; Ye, Yunming ; Li, Feng ; Liu, Feng ; Yao, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-fd93dc24279919cf88d3e01e1cb0675d38b80d095db7fa0738a16384e1735d473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Embedding</topic><topic>Image Processing and Computer Vision</topic><topic>Nodes</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Representations</topic><topic>Social networks</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Zhichao</creatorcontrib><creatorcontrib>Li, Xutao</creatorcontrib><creatorcontrib>Ye, Yunming</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>Yao, Yuan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Zhichao</au><au>Li, Xutao</au><au>Ye, Yunming</au><au>Li, Feng</au><au>Liu, Feng</au><au>Yao, Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TLVANE: a two-level variation model for attributed network embedding</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>32</volume><issue>9</issue><spage>4835</spage><epage>4847</epage><pages>4835-4847</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Network embedding aims to learn low-dimensional representations for nodes in social networks, which can serve many applications, such as node classification, link prediction and visualization. Most of network embedding methods focus on learning the representations solely from the topological structure. Recently, attributed network embedding, which utilizes both the topological structure and node content to jointly learn latent representations, becomes a hot topic. However, previous studies obtain the joint representations by directly concatenating the one from each aspect, which may lose the correlations between the topological structure and node content. In this paper, we propose a new attributed network embedding method,
TLVANE
, which can address the drawback by exploiting the deep variational autoencoders (VAEs). Particularly, a two-level VAE model is built, where the first-level accounts for the joint representations while the second for the embeddings of each aspect. Extensive experiments on three real-world datasets have been conducted, and the results demonstrate the superiority of the proposed method against state-of-the-art competitors.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-018-3875-5</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2020-05, Vol.32 (9), p.4835-4847 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2391790682 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Embedding Image Processing and Computer Vision Nodes Original Article Probability and Statistics in Computer Science Representations Social networks Topology |
title | TLVANE: a two-level variation model for attributed network embedding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A02%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TLVANE:%20a%20two-level%20variation%20model%20for%20attributed%20network%20embedding&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Huang,%20Zhichao&rft.date=2020-05-01&rft.volume=32&rft.issue=9&rft.spage=4835&rft.epage=4847&rft.pages=4835-4847&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-018-3875-5&rft_dat=%3Cproquest_cross%3E2391790682%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2391790682&rft_id=info:pmid/&rfr_iscdi=true |