TLVANE: a two-level variation model for attributed network embedding

Network embedding aims to learn low-dimensional representations for nodes in social networks, which can serve many applications, such as node classification, link prediction and visualization. Most of network embedding methods focus on learning the representations solely from the topological structu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2020-05, Vol.32 (9), p.4835-4847
Hauptverfasser: Huang, Zhichao, Li, Xutao, Ye, Yunming, Li, Feng, Liu, Feng, Yao, Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4847
container_issue 9
container_start_page 4835
container_title Neural computing & applications
container_volume 32
creator Huang, Zhichao
Li, Xutao
Ye, Yunming
Li, Feng
Liu, Feng
Yao, Yuan
description Network embedding aims to learn low-dimensional representations for nodes in social networks, which can serve many applications, such as node classification, link prediction and visualization. Most of network embedding methods focus on learning the representations solely from the topological structure. Recently, attributed network embedding, which utilizes both the topological structure and node content to jointly learn latent representations, becomes a hot topic. However, previous studies obtain the joint representations by directly concatenating the one from each aspect, which may lose the correlations between the topological structure and node content. In this paper, we propose a new attributed network embedding method, TLVANE , which can address the drawback by exploiting the deep variational autoencoders (VAEs). Particularly, a two-level VAE model is built, where the first-level accounts for the joint representations while the second for the embeddings of each aspect. Extensive experiments on three real-world datasets have been conducted, and the results demonstrate the superiority of the proposed method against state-of-the-art competitors.
doi_str_mv 10.1007/s00521-018-3875-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2391790682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2391790682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-fd93dc24279919cf88d3e01e1cb0675d38b80d095db7fa0738a16384e1735d473</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4C3gOTrZJJvEW6mtCkUv1WvIbrJla7upybbi25uygidPwzDf_w98CF1TuKUA8i4BiIISoIowJQURJ2hEOWOEgVCnaASa52vJ2Tm6SGkNALxUYoQelov3ycvsHlvcfwWy8Qe_wQcbW9u3ocPb4PLehIht38e22vfe4c5nNH5gv628c223ukRnjd0kf_U7x-htPltOn8ji9fF5OlmQmtGyJ43TzNUFL6TWVNeNUo55oJ7WFZRSOKYqBQ60cJVsLEimLC2Z4p5KJhyXbIxuht5dDJ97n3qzDvvY5ZemYJpKDaUqMkUHqo4hpegbs4vt1sZvQ8EcZZlBlsmyzFGWETlTDJmU2W7l41_z_6EfsIdq2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391790682</pqid></control><display><type>article</type><title>TLVANE: a two-level variation model for attributed network embedding</title><source>SpringerLink Journals - AutoHoldings</source><creator>Huang, Zhichao ; Li, Xutao ; Ye, Yunming ; Li, Feng ; Liu, Feng ; Yao, Yuan</creator><creatorcontrib>Huang, Zhichao ; Li, Xutao ; Ye, Yunming ; Li, Feng ; Liu, Feng ; Yao, Yuan</creatorcontrib><description>Network embedding aims to learn low-dimensional representations for nodes in social networks, which can serve many applications, such as node classification, link prediction and visualization. Most of network embedding methods focus on learning the representations solely from the topological structure. Recently, attributed network embedding, which utilizes both the topological structure and node content to jointly learn latent representations, becomes a hot topic. However, previous studies obtain the joint representations by directly concatenating the one from each aspect, which may lose the correlations between the topological structure and node content. In this paper, we propose a new attributed network embedding method, TLVANE , which can address the drawback by exploiting the deep variational autoencoders (VAEs). Particularly, a two-level VAE model is built, where the first-level accounts for the joint representations while the second for the embeddings of each aspect. Extensive experiments on three real-world datasets have been conducted, and the results demonstrate the superiority of the proposed method against state-of-the-art competitors.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-018-3875-5</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Embedding ; Image Processing and Computer Vision ; Nodes ; Original Article ; Probability and Statistics in Computer Science ; Representations ; Social networks ; Topology</subject><ispartof>Neural computing &amp; applications, 2020-05, Vol.32 (9), p.4835-4847</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2018</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-fd93dc24279919cf88d3e01e1cb0675d38b80d095db7fa0738a16384e1735d473</citedby><cites>FETCH-LOGICAL-c316t-fd93dc24279919cf88d3e01e1cb0675d38b80d095db7fa0738a16384e1735d473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-018-3875-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-018-3875-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Huang, Zhichao</creatorcontrib><creatorcontrib>Li, Xutao</creatorcontrib><creatorcontrib>Ye, Yunming</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>Yao, Yuan</creatorcontrib><title>TLVANE: a two-level variation model for attributed network embedding</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>Network embedding aims to learn low-dimensional representations for nodes in social networks, which can serve many applications, such as node classification, link prediction and visualization. Most of network embedding methods focus on learning the representations solely from the topological structure. Recently, attributed network embedding, which utilizes both the topological structure and node content to jointly learn latent representations, becomes a hot topic. However, previous studies obtain the joint representations by directly concatenating the one from each aspect, which may lose the correlations between the topological structure and node content. In this paper, we propose a new attributed network embedding method, TLVANE , which can address the drawback by exploiting the deep variational autoencoders (VAEs). Particularly, a two-level VAE model is built, where the first-level accounts for the joint representations while the second for the embeddings of each aspect. Extensive experiments on three real-world datasets have been conducted, and the results demonstrate the superiority of the proposed method against state-of-the-art competitors.</description><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Embedding</subject><subject>Image Processing and Computer Vision</subject><subject>Nodes</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Representations</subject><subject>Social networks</subject><subject>Topology</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kMFKAzEQhoMoWKsP4C3gOTrZJJvEW6mtCkUv1WvIbrJla7upybbi25uygidPwzDf_w98CF1TuKUA8i4BiIISoIowJQURJ2hEOWOEgVCnaASa52vJ2Tm6SGkNALxUYoQelov3ycvsHlvcfwWy8Qe_wQcbW9u3ocPb4PLehIht38e22vfe4c5nNH5gv628c223ukRnjd0kf_U7x-htPltOn8ji9fF5OlmQmtGyJ43TzNUFL6TWVNeNUo55oJ7WFZRSOKYqBQ60cJVsLEimLC2Z4p5KJhyXbIxuht5dDJ97n3qzDvvY5ZemYJpKDaUqMkUHqo4hpegbs4vt1sZvQ8EcZZlBlsmyzFGWETlTDJmU2W7l41_z_6EfsIdq2Q</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Huang, Zhichao</creator><creator>Li, Xutao</creator><creator>Ye, Yunming</creator><creator>Li, Feng</creator><creator>Liu, Feng</creator><creator>Yao, Yuan</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20200501</creationdate><title>TLVANE: a two-level variation model for attributed network embedding</title><author>Huang, Zhichao ; Li, Xutao ; Ye, Yunming ; Li, Feng ; Liu, Feng ; Yao, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-fd93dc24279919cf88d3e01e1cb0675d38b80d095db7fa0738a16384e1735d473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Embedding</topic><topic>Image Processing and Computer Vision</topic><topic>Nodes</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Representations</topic><topic>Social networks</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Zhichao</creatorcontrib><creatorcontrib>Li, Xutao</creatorcontrib><creatorcontrib>Ye, Yunming</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>Yao, Yuan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Zhichao</au><au>Li, Xutao</au><au>Ye, Yunming</au><au>Li, Feng</au><au>Liu, Feng</au><au>Yao, Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TLVANE: a two-level variation model for attributed network embedding</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>32</volume><issue>9</issue><spage>4835</spage><epage>4847</epage><pages>4835-4847</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Network embedding aims to learn low-dimensional representations for nodes in social networks, which can serve many applications, such as node classification, link prediction and visualization. Most of network embedding methods focus on learning the representations solely from the topological structure. Recently, attributed network embedding, which utilizes both the topological structure and node content to jointly learn latent representations, becomes a hot topic. However, previous studies obtain the joint representations by directly concatenating the one from each aspect, which may lose the correlations between the topological structure and node content. In this paper, we propose a new attributed network embedding method, TLVANE , which can address the drawback by exploiting the deep variational autoencoders (VAEs). Particularly, a two-level VAE model is built, where the first-level accounts for the joint representations while the second for the embeddings of each aspect. Extensive experiments on three real-world datasets have been conducted, and the results demonstrate the superiority of the proposed method against state-of-the-art competitors.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-018-3875-5</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2020-05, Vol.32 (9), p.4835-4847
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2391790682
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Embedding
Image Processing and Computer Vision
Nodes
Original Article
Probability and Statistics in Computer Science
Representations
Social networks
Topology
title TLVANE: a two-level variation model for attributed network embedding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A02%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TLVANE:%20a%20two-level%20variation%20model%20for%20attributed%20network%20embedding&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Huang,%20Zhichao&rft.date=2020-05-01&rft.volume=32&rft.issue=9&rft.spage=4835&rft.epage=4847&rft.pages=4835-4847&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-018-3875-5&rft_dat=%3Cproquest_cross%3E2391790682%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2391790682&rft_id=info:pmid/&rfr_iscdi=true