Convergence analysis of an iterative algorithm to solve system of nonlinear stochastic Itô‐Volterra integral equations

In this paper, an efficient and accurate numerical iterative algorithm based on the linear spline interpolation for solving the system of nonlinear stochastic Itô‐Volterra integral equations is presented. The most important merit of this method is that it does not need to solve any system of nonline...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2020-05, Vol.43 (8), p.5212-5233
Hauptverfasser: Saffarzadeh, Masoud, Heydari, Mohammad, Barid Loghmani, Ghasem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5233
container_issue 8
container_start_page 5212
container_title Mathematical methods in the applied sciences
container_volume 43
creator Saffarzadeh, Masoud
Heydari, Mohammad
Barid Loghmani, Ghasem
description In this paper, an efficient and accurate numerical iterative algorithm based on the linear spline interpolation for solving the system of nonlinear stochastic Itô‐Volterra integral equations is presented. The most important merit of this method is that it does not need to solve any system of nonlinear algebraic equations. An upper bound for the linear spline approximation of the stochastic function is provided. Using this upper bound and under the Lipschitz and linear growth conditions, the convergence analysis of the suggested method is studied. Finally, to verify the efficiency of the proposed scheme, some problems in the finance, physics, and biology are investigated, and the obtained results are compared with the stochastic θ‐method.
doi_str_mv 10.1002/mma.6261
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2391790464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2391790464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2931-85d045a49ff668ec975298966e3ed12e55db07df2231fcdfbb9cd15c70bf1d183</originalsourceid><addsrcrecordid>eNp10E1KAzEUB_AgCtYqeISAGzdT8zKfWZbiR6HiRt0OaSZpUzKTNkkrs_MIHsYbeBNPYmrdusoj78cf3h-hSyAjIITetC0fFbSAIzQAwlgCWVkcowGBkiQZhewUnXm_IoRUAHSA-ontdtItZCck5h03vdceWxVnrIN0POhdXJiFdTosWxws9tbEL9_7INu97GxndCe5wz5YseQ-aIGn4evz-_3j1ZoY4jjWXZALxw2Wm23MtJ0_RyeKGy8v_t4herm7fZ48JLOn--lkPEsEZSkkVd6QLOcZU6ooKilYmVNWsaKQqWyAyjxv5qRsFKUpKNGo-ZyJBnJRkrmCBqp0iK4OuWtnN1vpQ72yWxcv9TVNGZSMZEUW1fVBCWe9d1LVa6db7voaSL0vto7F1vtiI00O9E0b2f_r6sfH8a__AYHHffE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391790464</pqid></control><display><type>article</type><title>Convergence analysis of an iterative algorithm to solve system of nonlinear stochastic Itô‐Volterra integral equations</title><source>Wiley Online Library All Journals</source><creator>Saffarzadeh, Masoud ; Heydari, Mohammad ; Barid Loghmani, Ghasem</creator><creatorcontrib>Saffarzadeh, Masoud ; Heydari, Mohammad ; Barid Loghmani, Ghasem</creatorcontrib><description>In this paper, an efficient and accurate numerical iterative algorithm based on the linear spline interpolation for solving the system of nonlinear stochastic Itô‐Volterra integral equations is presented. The most important merit of this method is that it does not need to solve any system of nonlinear algebraic equations. An upper bound for the linear spline approximation of the stochastic function is provided. Using this upper bound and under the Lipschitz and linear growth conditions, the convergence analysis of the suggested method is studied. Finally, to verify the efficiency of the proposed scheme, some problems in the finance, physics, and biology are investigated, and the obtained results are compared with the stochastic θ‐method.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.6261</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Convergence ; Integral equations ; Interpolation ; Iterative algorithms ; Iterative methods ; linear spline interpolation ; Mathematical analysis ; multiple stock models ; Nonlinear equations ; pendulum problem ; predator‐prey models ; successive approximations method ; system of stochastic Volterra integral equations ; Upper bounds ; Volterra integral equations</subject><ispartof>Mathematical methods in the applied sciences, 2020-05, Vol.43 (8), p.5212-5233</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2931-85d045a49ff668ec975298966e3ed12e55db07df2231fcdfbb9cd15c70bf1d183</citedby><cites>FETCH-LOGICAL-c2931-85d045a49ff668ec975298966e3ed12e55db07df2231fcdfbb9cd15c70bf1d183</cites><orcidid>0000-0002-4024-980X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.6261$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.6261$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Saffarzadeh, Masoud</creatorcontrib><creatorcontrib>Heydari, Mohammad</creatorcontrib><creatorcontrib>Barid Loghmani, Ghasem</creatorcontrib><title>Convergence analysis of an iterative algorithm to solve system of nonlinear stochastic Itô‐Volterra integral equations</title><title>Mathematical methods in the applied sciences</title><description>In this paper, an efficient and accurate numerical iterative algorithm based on the linear spline interpolation for solving the system of nonlinear stochastic Itô‐Volterra integral equations is presented. The most important merit of this method is that it does not need to solve any system of nonlinear algebraic equations. An upper bound for the linear spline approximation of the stochastic function is provided. Using this upper bound and under the Lipschitz and linear growth conditions, the convergence analysis of the suggested method is studied. Finally, to verify the efficiency of the proposed scheme, some problems in the finance, physics, and biology are investigated, and the obtained results are compared with the stochastic θ‐method.</description><subject>Convergence</subject><subject>Integral equations</subject><subject>Interpolation</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>linear spline interpolation</subject><subject>Mathematical analysis</subject><subject>multiple stock models</subject><subject>Nonlinear equations</subject><subject>pendulum problem</subject><subject>predator‐prey models</subject><subject>successive approximations method</subject><subject>system of stochastic Volterra integral equations</subject><subject>Upper bounds</subject><subject>Volterra integral equations</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10E1KAzEUB_AgCtYqeISAGzdT8zKfWZbiR6HiRt0OaSZpUzKTNkkrs_MIHsYbeBNPYmrdusoj78cf3h-hSyAjIITetC0fFbSAIzQAwlgCWVkcowGBkiQZhewUnXm_IoRUAHSA-ontdtItZCck5h03vdceWxVnrIN0POhdXJiFdTosWxws9tbEL9_7INu97GxndCe5wz5YseQ-aIGn4evz-_3j1ZoY4jjWXZALxw2Wm23MtJ0_RyeKGy8v_t4herm7fZ48JLOn--lkPEsEZSkkVd6QLOcZU6ooKilYmVNWsaKQqWyAyjxv5qRsFKUpKNGo-ZyJBnJRkrmCBqp0iK4OuWtnN1vpQ72yWxcv9TVNGZSMZEUW1fVBCWe9d1LVa6db7voaSL0vto7F1vtiI00O9E0b2f_r6sfH8a__AYHHffE</recordid><startdate>20200530</startdate><enddate>20200530</enddate><creator>Saffarzadeh, Masoud</creator><creator>Heydari, Mohammad</creator><creator>Barid Loghmani, Ghasem</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-4024-980X</orcidid></search><sort><creationdate>20200530</creationdate><title>Convergence analysis of an iterative algorithm to solve system of nonlinear stochastic Itô‐Volterra integral equations</title><author>Saffarzadeh, Masoud ; Heydari, Mohammad ; Barid Loghmani, Ghasem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2931-85d045a49ff668ec975298966e3ed12e55db07df2231fcdfbb9cd15c70bf1d183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Convergence</topic><topic>Integral equations</topic><topic>Interpolation</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>linear spline interpolation</topic><topic>Mathematical analysis</topic><topic>multiple stock models</topic><topic>Nonlinear equations</topic><topic>pendulum problem</topic><topic>predator‐prey models</topic><topic>successive approximations method</topic><topic>system of stochastic Volterra integral equations</topic><topic>Upper bounds</topic><topic>Volterra integral equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saffarzadeh, Masoud</creatorcontrib><creatorcontrib>Heydari, Mohammad</creatorcontrib><creatorcontrib>Barid Loghmani, Ghasem</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saffarzadeh, Masoud</au><au>Heydari, Mohammad</au><au>Barid Loghmani, Ghasem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence analysis of an iterative algorithm to solve system of nonlinear stochastic Itô‐Volterra integral equations</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2020-05-30</date><risdate>2020</risdate><volume>43</volume><issue>8</issue><spage>5212</spage><epage>5233</epage><pages>5212-5233</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this paper, an efficient and accurate numerical iterative algorithm based on the linear spline interpolation for solving the system of nonlinear stochastic Itô‐Volterra integral equations is presented. The most important merit of this method is that it does not need to solve any system of nonlinear algebraic equations. An upper bound for the linear spline approximation of the stochastic function is provided. Using this upper bound and under the Lipschitz and linear growth conditions, the convergence analysis of the suggested method is studied. Finally, to verify the efficiency of the proposed scheme, some problems in the finance, physics, and biology are investigated, and the obtained results are compared with the stochastic θ‐method.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.6261</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-4024-980X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2020-05, Vol.43 (8), p.5212-5233
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2391790464
source Wiley Online Library All Journals
subjects Convergence
Integral equations
Interpolation
Iterative algorithms
Iterative methods
linear spline interpolation
Mathematical analysis
multiple stock models
Nonlinear equations
pendulum problem
predator‐prey models
successive approximations method
system of stochastic Volterra integral equations
Upper bounds
Volterra integral equations
title Convergence analysis of an iterative algorithm to solve system of nonlinear stochastic Itô‐Volterra integral equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A38%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20analysis%20of%20an%20iterative%20algorithm%20to%20solve%20system%20of%20nonlinear%20stochastic%20It%C3%B4%E2%80%90Volterra%20integral%20equations&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Saffarzadeh,%20Masoud&rft.date=2020-05-30&rft.volume=43&rft.issue=8&rft.spage=5212&rft.epage=5233&rft.pages=5212-5233&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.6261&rft_dat=%3Cproquest_cross%3E2391790464%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2391790464&rft_id=info:pmid/&rfr_iscdi=true