Limitations for Reliable Operation at Elevated Temperatures of Al2O3/AlGaN/GaN Metal–Insulator–Semiconductor High‐Electron‐Mobility Transistors Grown by Metal‐Organic Chemical Vapor Deposition on Silicon Substrate
Herein, the gate degradation mechanisms of gallium nitride (GaN)‐based metal–insulator–semiconductor high‐electron‐mobility transistors (MISHEMTs) utilizing Al2O3 grown by plasma‐enhanced atomic layer deposition (PEALD) are systematically investigated. By applying constant voltage stress and the tim...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. A, Applications and materials science Applications and materials science, 2020-04, Vol.217 (7), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Physica status solidi. A, Applications and materials science |
container_volume | 217 |
creator | Heuken, Lars Ottaviani, Alessandro Fahle, Dirk Zweipfennig, Thorsten Lükens, Gerrit Kalisch, Holger Vescan, Andrei Heuken, Michael Burghartz, Joachim N. |
description | Herein, the gate degradation mechanisms of gallium nitride (GaN)‐based metal–insulator–semiconductor high‐electron‐mobility transistors (MISHEMTs) utilizing Al2O3 grown by plasma‐enhanced atomic layer deposition (PEALD) are systematically investigated. By applying constant voltage stress and the time‐dependent dielectric breakdown (TDDB) methodology under variation of bias and temperature, an activation energy of 1.25 eV for the time to breakdown and a 1/E model extrapolating the lifetime are found. A maximum gate operation voltage at 298 K of 4.9 V is extrapolated, which decreases to a projected voltage of 3.5 V at 598 K operation temperature, due to an accelerated defect generation. The physical origin of the TDDB of Al2O3 is related to the formation of a percolation path by randomly generated defects in the oxide under stress bias. This mechanism, which also requires the presence of an initial defect density in Al2O3, is confirmed by Monte Carlo simulations, which are in agreement with the experimental data.
The gate degradation mechanisms of gallium nitride (GaN)‐based metal–insulator–semiconductor high‐electron‐mobility transistors (MISHEMTs) utilizing Al2O3 grown by plasma‐enhanced atomic layer deposition (PEALD) are systematically investigated. By applying constant voltage stress and the time‐dependent dielectric breakdown methodology under variation of bias and temperature, the activation energy of the time to breakdown is found and the lifetime is extrapolated. |
doi_str_mv | 10.1002/pssa.201900697 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2391783368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2391783368</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2337-898032aff82117b025546304c1da13b357bb2dd7f190a0378d6f6dc8d11d1e843</originalsourceid><addsrcrecordid>eNo9kU1LAzEQhhdRsH5cPQc81-Zju5s9lqqtUK3Y6nWZ3WQ1Jd2sSdbSmz9B8AcK_hLTqoWEeWcYnhnmjaIzgi8IxrTXOAcXFJMM4yRL96IO4QntJoxk-zuN8WF05NwC47gfp6QTfU3UUnnwytQOVcaiB6kVFFqiaSPtto7Aoyst38BLgeZyua23VjpkKjTQdMp6Az2Cu1746FZ60N_vnze1azV4Y4OeyaUqTS3aMuRorJ5fvt8_ArH01tRB3ppCaeXXaG6hdsqFLodG1qxqVKz_iR9T-wy1KtHwZYMDjZ6gCbhL2RintnuGNwugchPbwvmwpjyJDirQTp7-xePo8fpqPhx3J9PRzXAw6TaUsbTLM44ZharilJC0wLTfj8O14pIIIKxg_bQoqBBpFa4LmKVcJFUiSi4IEUTymB1H57_cxprXVjqfL0xr6zAypywjKWcs4aEr--1aKS3XeWPVEuw6JzjfOJhvHMx3Dub3s9lgl7EflpSbiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391783368</pqid></control><display><type>article</type><title>Limitations for Reliable Operation at Elevated Temperatures of Al2O3/AlGaN/GaN Metal–Insulator–Semiconductor High‐Electron‐Mobility Transistors Grown by Metal‐Organic Chemical Vapor Deposition on Silicon Substrate</title><source>Access via Wiley Online Library</source><creator>Heuken, Lars ; Ottaviani, Alessandro ; Fahle, Dirk ; Zweipfennig, Thorsten ; Lükens, Gerrit ; Kalisch, Holger ; Vescan, Andrei ; Heuken, Michael ; Burghartz, Joachim N.</creator><creatorcontrib>Heuken, Lars ; Ottaviani, Alessandro ; Fahle, Dirk ; Zweipfennig, Thorsten ; Lükens, Gerrit ; Kalisch, Holger ; Vescan, Andrei ; Heuken, Michael ; Burghartz, Joachim N.</creatorcontrib><description>Herein, the gate degradation mechanisms of gallium nitride (GaN)‐based metal–insulator–semiconductor high‐electron‐mobility transistors (MISHEMTs) utilizing Al2O3 grown by plasma‐enhanced atomic layer deposition (PEALD) are systematically investigated. By applying constant voltage stress and the time‐dependent dielectric breakdown (TDDB) methodology under variation of bias and temperature, an activation energy of 1.25 eV for the time to breakdown and a 1/E model extrapolating the lifetime are found. A maximum gate operation voltage at 298 K of 4.9 V is extrapolated, which decreases to a projected voltage of 3.5 V at 598 K operation temperature, due to an accelerated defect generation. The physical origin of the TDDB of Al2O3 is related to the formation of a percolation path by randomly generated defects in the oxide under stress bias. This mechanism, which also requires the presence of an initial defect density in Al2O3, is confirmed by Monte Carlo simulations, which are in agreement with the experimental data.
The gate degradation mechanisms of gallium nitride (GaN)‐based metal–insulator–semiconductor high‐electron‐mobility transistors (MISHEMTs) utilizing Al2O3 grown by plasma‐enhanced atomic layer deposition (PEALD) are systematically investigated. By applying constant voltage stress and the time‐dependent dielectric breakdown methodology under variation of bias and temperature, the activation energy of the time to breakdown is found and the lifetime is extrapolated.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.201900697</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>activation energies ; Al2O3 ; AlGaN/GaN metal–insulator–semiconductor high-electron-mobility transistors ; Aluminum gallium nitrides ; Aluminum oxide ; Atomic layer epitaxy ; Bias ; Computer simulation ; Dielectric breakdown ; Electric potential ; Gallium nitrides ; High electron mobility transistors ; High temperature ; Metalorganic chemical vapor deposition ; MIS (semiconductors) ; Organic chemicals ; Organic chemistry ; Percolation ; reliability ; Semiconductor devices ; Silicon substrates ; Time dependence ; time-dependent dielectric breakdown ; Transistors ; Voltage</subject><ispartof>Physica status solidi. A, Applications and materials science, 2020-04, Vol.217 (7), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0158-4189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.201900697$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.201900697$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Heuken, Lars</creatorcontrib><creatorcontrib>Ottaviani, Alessandro</creatorcontrib><creatorcontrib>Fahle, Dirk</creatorcontrib><creatorcontrib>Zweipfennig, Thorsten</creatorcontrib><creatorcontrib>Lükens, Gerrit</creatorcontrib><creatorcontrib>Kalisch, Holger</creatorcontrib><creatorcontrib>Vescan, Andrei</creatorcontrib><creatorcontrib>Heuken, Michael</creatorcontrib><creatorcontrib>Burghartz, Joachim N.</creatorcontrib><title>Limitations for Reliable Operation at Elevated Temperatures of Al2O3/AlGaN/GaN Metal–Insulator–Semiconductor High‐Electron‐Mobility Transistors Grown by Metal‐Organic Chemical Vapor Deposition on Silicon Substrate</title><title>Physica status solidi. A, Applications and materials science</title><description>Herein, the gate degradation mechanisms of gallium nitride (GaN)‐based metal–insulator–semiconductor high‐electron‐mobility transistors (MISHEMTs) utilizing Al2O3 grown by plasma‐enhanced atomic layer deposition (PEALD) are systematically investigated. By applying constant voltage stress and the time‐dependent dielectric breakdown (TDDB) methodology under variation of bias and temperature, an activation energy of 1.25 eV for the time to breakdown and a 1/E model extrapolating the lifetime are found. A maximum gate operation voltage at 298 K of 4.9 V is extrapolated, which decreases to a projected voltage of 3.5 V at 598 K operation temperature, due to an accelerated defect generation. The physical origin of the TDDB of Al2O3 is related to the formation of a percolation path by randomly generated defects in the oxide under stress bias. This mechanism, which also requires the presence of an initial defect density in Al2O3, is confirmed by Monte Carlo simulations, which are in agreement with the experimental data.
The gate degradation mechanisms of gallium nitride (GaN)‐based metal–insulator–semiconductor high‐electron‐mobility transistors (MISHEMTs) utilizing Al2O3 grown by plasma‐enhanced atomic layer deposition (PEALD) are systematically investigated. By applying constant voltage stress and the time‐dependent dielectric breakdown methodology under variation of bias and temperature, the activation energy of the time to breakdown is found and the lifetime is extrapolated.</description><subject>activation energies</subject><subject>Al2O3</subject><subject>AlGaN/GaN metal–insulator–semiconductor high-electron-mobility transistors</subject><subject>Aluminum gallium nitrides</subject><subject>Aluminum oxide</subject><subject>Atomic layer epitaxy</subject><subject>Bias</subject><subject>Computer simulation</subject><subject>Dielectric breakdown</subject><subject>Electric potential</subject><subject>Gallium nitrides</subject><subject>High electron mobility transistors</subject><subject>High temperature</subject><subject>Metalorganic chemical vapor deposition</subject><subject>MIS (semiconductors)</subject><subject>Organic chemicals</subject><subject>Organic chemistry</subject><subject>Percolation</subject><subject>reliability</subject><subject>Semiconductor devices</subject><subject>Silicon substrates</subject><subject>Time dependence</subject><subject>time-dependent dielectric breakdown</subject><subject>Transistors</subject><subject>Voltage</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kU1LAzEQhhdRsH5cPQc81-Zju5s9lqqtUK3Y6nWZ3WQ1Jd2sSdbSmz9B8AcK_hLTqoWEeWcYnhnmjaIzgi8IxrTXOAcXFJMM4yRL96IO4QntJoxk-zuN8WF05NwC47gfp6QTfU3UUnnwytQOVcaiB6kVFFqiaSPtto7Aoyst38BLgeZyua23VjpkKjTQdMp6Az2Cu1746FZ60N_vnze1azV4Y4OeyaUqTS3aMuRorJ5fvt8_ArH01tRB3ppCaeXXaG6hdsqFLodG1qxqVKz_iR9T-wy1KtHwZYMDjZ6gCbhL2RintnuGNwugchPbwvmwpjyJDirQTp7-xePo8fpqPhx3J9PRzXAw6TaUsbTLM44ZharilJC0wLTfj8O14pIIIKxg_bQoqBBpFa4LmKVcJFUiSi4IEUTymB1H57_cxprXVjqfL0xr6zAypywjKWcs4aEr--1aKS3XeWPVEuw6JzjfOJhvHMx3Dub3s9lgl7EflpSbiQ</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Heuken, Lars</creator><creator>Ottaviani, Alessandro</creator><creator>Fahle, Dirk</creator><creator>Zweipfennig, Thorsten</creator><creator>Lükens, Gerrit</creator><creator>Kalisch, Holger</creator><creator>Vescan, Andrei</creator><creator>Heuken, Michael</creator><creator>Burghartz, Joachim N.</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0158-4189</orcidid></search><sort><creationdate>202004</creationdate><title>Limitations for Reliable Operation at Elevated Temperatures of Al2O3/AlGaN/GaN Metal–Insulator–Semiconductor High‐Electron‐Mobility Transistors Grown by Metal‐Organic Chemical Vapor Deposition on Silicon Substrate</title><author>Heuken, Lars ; Ottaviani, Alessandro ; Fahle, Dirk ; Zweipfennig, Thorsten ; Lükens, Gerrit ; Kalisch, Holger ; Vescan, Andrei ; Heuken, Michael ; Burghartz, Joachim N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2337-898032aff82117b025546304c1da13b357bb2dd7f190a0378d6f6dc8d11d1e843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>activation energies</topic><topic>Al2O3</topic><topic>AlGaN/GaN metal–insulator–semiconductor high-electron-mobility transistors</topic><topic>Aluminum gallium nitrides</topic><topic>Aluminum oxide</topic><topic>Atomic layer epitaxy</topic><topic>Bias</topic><topic>Computer simulation</topic><topic>Dielectric breakdown</topic><topic>Electric potential</topic><topic>Gallium nitrides</topic><topic>High electron mobility transistors</topic><topic>High temperature</topic><topic>Metalorganic chemical vapor deposition</topic><topic>MIS (semiconductors)</topic><topic>Organic chemicals</topic><topic>Organic chemistry</topic><topic>Percolation</topic><topic>reliability</topic><topic>Semiconductor devices</topic><topic>Silicon substrates</topic><topic>Time dependence</topic><topic>time-dependent dielectric breakdown</topic><topic>Transistors</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heuken, Lars</creatorcontrib><creatorcontrib>Ottaviani, Alessandro</creatorcontrib><creatorcontrib>Fahle, Dirk</creatorcontrib><creatorcontrib>Zweipfennig, Thorsten</creatorcontrib><creatorcontrib>Lükens, Gerrit</creatorcontrib><creatorcontrib>Kalisch, Holger</creatorcontrib><creatorcontrib>Vescan, Andrei</creatorcontrib><creatorcontrib>Heuken, Michael</creatorcontrib><creatorcontrib>Burghartz, Joachim N.</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heuken, Lars</au><au>Ottaviani, Alessandro</au><au>Fahle, Dirk</au><au>Zweipfennig, Thorsten</au><au>Lükens, Gerrit</au><au>Kalisch, Holger</au><au>Vescan, Andrei</au><au>Heuken, Michael</au><au>Burghartz, Joachim N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limitations for Reliable Operation at Elevated Temperatures of Al2O3/AlGaN/GaN Metal–Insulator–Semiconductor High‐Electron‐Mobility Transistors Grown by Metal‐Organic Chemical Vapor Deposition on Silicon Substrate</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2020-04</date><risdate>2020</risdate><volume>217</volume><issue>7</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Herein, the gate degradation mechanisms of gallium nitride (GaN)‐based metal–insulator–semiconductor high‐electron‐mobility transistors (MISHEMTs) utilizing Al2O3 grown by plasma‐enhanced atomic layer deposition (PEALD) are systematically investigated. By applying constant voltage stress and the time‐dependent dielectric breakdown (TDDB) methodology under variation of bias and temperature, an activation energy of 1.25 eV for the time to breakdown and a 1/E model extrapolating the lifetime are found. A maximum gate operation voltage at 298 K of 4.9 V is extrapolated, which decreases to a projected voltage of 3.5 V at 598 K operation temperature, due to an accelerated defect generation. The physical origin of the TDDB of Al2O3 is related to the formation of a percolation path by randomly generated defects in the oxide under stress bias. This mechanism, which also requires the presence of an initial defect density in Al2O3, is confirmed by Monte Carlo simulations, which are in agreement with the experimental data.
The gate degradation mechanisms of gallium nitride (GaN)‐based metal–insulator–semiconductor high‐electron‐mobility transistors (MISHEMTs) utilizing Al2O3 grown by plasma‐enhanced atomic layer deposition (PEALD) are systematically investigated. By applying constant voltage stress and the time‐dependent dielectric breakdown methodology under variation of bias and temperature, the activation energy of the time to breakdown is found and the lifetime is extrapolated.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.201900697</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0158-4189</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6300 |
ispartof | Physica status solidi. A, Applications and materials science, 2020-04, Vol.217 (7), p.n/a |
issn | 1862-6300 1862-6319 |
language | eng |
recordid | cdi_proquest_journals_2391783368 |
source | Access via Wiley Online Library |
subjects | activation energies Al2O3 AlGaN/GaN metal–insulator–semiconductor high-electron-mobility transistors Aluminum gallium nitrides Aluminum oxide Atomic layer epitaxy Bias Computer simulation Dielectric breakdown Electric potential Gallium nitrides High electron mobility transistors High temperature Metalorganic chemical vapor deposition MIS (semiconductors) Organic chemicals Organic chemistry Percolation reliability Semiconductor devices Silicon substrates Time dependence time-dependent dielectric breakdown Transistors Voltage |
title | Limitations for Reliable Operation at Elevated Temperatures of Al2O3/AlGaN/GaN Metal–Insulator–Semiconductor High‐Electron‐Mobility Transistors Grown by Metal‐Organic Chemical Vapor Deposition on Silicon Substrate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A48%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limitations%20for%20Reliable%20Operation%20at%20Elevated%20Temperatures%20of%20Al2O3/AlGaN/GaN%20Metal%E2%80%93Insulator%E2%80%93Semiconductor%20High%E2%80%90Electron%E2%80%90Mobility%20Transistors%20Grown%20by%20Metal%E2%80%90Organic%20Chemical%20Vapor%20Deposition%20on%20Silicon%20Substrate&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Heuken,%20Lars&rft.date=2020-04&rft.volume=217&rft.issue=7&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.201900697&rft_dat=%3Cproquest_wiley%3E2391783368%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2391783368&rft_id=info:pmid/&rfr_iscdi=true |