Limitations for Reliable Operation at Elevated Temperatures of Al2O3/AlGaN/GaN Metal–Insulator–Semiconductor High‐Electron‐Mobility Transistors Grown by Metal‐Organic Chemical Vapor Deposition on Silicon Substrate

Herein, the gate degradation mechanisms of gallium nitride (GaN)‐based metal–insulator–semiconductor high‐electron‐mobility transistors (MISHEMTs) utilizing Al2O3 grown by plasma‐enhanced atomic layer deposition (PEALD) are systematically investigated. By applying constant voltage stress and the tim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2020-04, Vol.217 (7), p.n/a
Hauptverfasser: Heuken, Lars, Ottaviani, Alessandro, Fahle, Dirk, Zweipfennig, Thorsten, Lükens, Gerrit, Kalisch, Holger, Vescan, Andrei, Heuken, Michael, Burghartz, Joachim N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page
container_title Physica status solidi. A, Applications and materials science
container_volume 217
creator Heuken, Lars
Ottaviani, Alessandro
Fahle, Dirk
Zweipfennig, Thorsten
Lükens, Gerrit
Kalisch, Holger
Vescan, Andrei
Heuken, Michael
Burghartz, Joachim N.
description Herein, the gate degradation mechanisms of gallium nitride (GaN)‐based metal–insulator–semiconductor high‐electron‐mobility transistors (MISHEMTs) utilizing Al2O3 grown by plasma‐enhanced atomic layer deposition (PEALD) are systematically investigated. By applying constant voltage stress and the time‐dependent dielectric breakdown (TDDB) methodology under variation of bias and temperature, an activation energy of 1.25 eV for the time to breakdown and a 1/E model extrapolating the lifetime are found. A maximum gate operation voltage at 298 K of 4.9 V is extrapolated, which decreases to a projected voltage of 3.5 V at 598 K operation temperature, due to an accelerated defect generation. The physical origin of the TDDB of Al2O3 is related to the formation of a percolation path by randomly generated defects in the oxide under stress bias. This mechanism, which also requires the presence of an initial defect density in Al2O3, is confirmed by Monte Carlo simulations, which are in agreement with the experimental data. The gate degradation mechanisms of gallium nitride (GaN)‐based metal–insulator–semiconductor high‐electron‐mobility transistors (MISHEMTs) utilizing Al2O3 grown by plasma‐enhanced atomic layer deposition (PEALD) are systematically investigated. By applying constant voltage stress and the time‐dependent dielectric breakdown methodology under variation of bias and temperature, the activation energy of the time to breakdown is found and the lifetime is extrapolated.
doi_str_mv 10.1002/pssa.201900697
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2391783368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2391783368</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2337-898032aff82117b025546304c1da13b357bb2dd7f190a0378d6f6dc8d11d1e843</originalsourceid><addsrcrecordid>eNo9kU1LAzEQhhdRsH5cPQc81-Zju5s9lqqtUK3Y6nWZ3WQ1Jd2sSdbSmz9B8AcK_hLTqoWEeWcYnhnmjaIzgi8IxrTXOAcXFJMM4yRL96IO4QntJoxk-zuN8WF05NwC47gfp6QTfU3UUnnwytQOVcaiB6kVFFqiaSPtto7Aoyst38BLgeZyua23VjpkKjTQdMp6Az2Cu1746FZ60N_vnze1azV4Y4OeyaUqTS3aMuRorJ5fvt8_ArH01tRB3ppCaeXXaG6hdsqFLodG1qxqVKz_iR9T-wy1KtHwZYMDjZ6gCbhL2RintnuGNwugchPbwvmwpjyJDirQTp7-xePo8fpqPhx3J9PRzXAw6TaUsbTLM44ZharilJC0wLTfj8O14pIIIKxg_bQoqBBpFa4LmKVcJFUiSi4IEUTymB1H57_cxprXVjqfL0xr6zAypywjKWcs4aEr--1aKS3XeWPVEuw6JzjfOJhvHMx3Dub3s9lgl7EflpSbiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391783368</pqid></control><display><type>article</type><title>Limitations for Reliable Operation at Elevated Temperatures of Al2O3/AlGaN/GaN Metal–Insulator–Semiconductor High‐Electron‐Mobility Transistors Grown by Metal‐Organic Chemical Vapor Deposition on Silicon Substrate</title><source>Access via Wiley Online Library</source><creator>Heuken, Lars ; Ottaviani, Alessandro ; Fahle, Dirk ; Zweipfennig, Thorsten ; Lükens, Gerrit ; Kalisch, Holger ; Vescan, Andrei ; Heuken, Michael ; Burghartz, Joachim N.</creator><creatorcontrib>Heuken, Lars ; Ottaviani, Alessandro ; Fahle, Dirk ; Zweipfennig, Thorsten ; Lükens, Gerrit ; Kalisch, Holger ; Vescan, Andrei ; Heuken, Michael ; Burghartz, Joachim N.</creatorcontrib><description>Herein, the gate degradation mechanisms of gallium nitride (GaN)‐based metal–insulator–semiconductor high‐electron‐mobility transistors (MISHEMTs) utilizing Al2O3 grown by plasma‐enhanced atomic layer deposition (PEALD) are systematically investigated. By applying constant voltage stress and the time‐dependent dielectric breakdown (TDDB) methodology under variation of bias and temperature, an activation energy of 1.25 eV for the time to breakdown and a 1/E model extrapolating the lifetime are found. A maximum gate operation voltage at 298 K of 4.9 V is extrapolated, which decreases to a projected voltage of 3.5 V at 598 K operation temperature, due to an accelerated defect generation. The physical origin of the TDDB of Al2O3 is related to the formation of a percolation path by randomly generated defects in the oxide under stress bias. This mechanism, which also requires the presence of an initial defect density in Al2O3, is confirmed by Monte Carlo simulations, which are in agreement with the experimental data. The gate degradation mechanisms of gallium nitride (GaN)‐based metal–insulator–semiconductor high‐electron‐mobility transistors (MISHEMTs) utilizing Al2O3 grown by plasma‐enhanced atomic layer deposition (PEALD) are systematically investigated. By applying constant voltage stress and the time‐dependent dielectric breakdown methodology under variation of bias and temperature, the activation energy of the time to breakdown is found and the lifetime is extrapolated.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.201900697</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>activation energies ; Al2O3 ; AlGaN/GaN metal–insulator–semiconductor high-electron-mobility transistors ; Aluminum gallium nitrides ; Aluminum oxide ; Atomic layer epitaxy ; Bias ; Computer simulation ; Dielectric breakdown ; Electric potential ; Gallium nitrides ; High electron mobility transistors ; High temperature ; Metalorganic chemical vapor deposition ; MIS (semiconductors) ; Organic chemicals ; Organic chemistry ; Percolation ; reliability ; Semiconductor devices ; Silicon substrates ; Time dependence ; time-dependent dielectric breakdown ; Transistors ; Voltage</subject><ispartof>Physica status solidi. A, Applications and materials science, 2020-04, Vol.217 (7), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0158-4189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.201900697$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.201900697$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Heuken, Lars</creatorcontrib><creatorcontrib>Ottaviani, Alessandro</creatorcontrib><creatorcontrib>Fahle, Dirk</creatorcontrib><creatorcontrib>Zweipfennig, Thorsten</creatorcontrib><creatorcontrib>Lükens, Gerrit</creatorcontrib><creatorcontrib>Kalisch, Holger</creatorcontrib><creatorcontrib>Vescan, Andrei</creatorcontrib><creatorcontrib>Heuken, Michael</creatorcontrib><creatorcontrib>Burghartz, Joachim N.</creatorcontrib><title>Limitations for Reliable Operation at Elevated Temperatures of Al2O3/AlGaN/GaN Metal–Insulator–Semiconductor High‐Electron‐Mobility Transistors Grown by Metal‐Organic Chemical Vapor Deposition on Silicon Substrate</title><title>Physica status solidi. A, Applications and materials science</title><description>Herein, the gate degradation mechanisms of gallium nitride (GaN)‐based metal–insulator–semiconductor high‐electron‐mobility transistors (MISHEMTs) utilizing Al2O3 grown by plasma‐enhanced atomic layer deposition (PEALD) are systematically investigated. By applying constant voltage stress and the time‐dependent dielectric breakdown (TDDB) methodology under variation of bias and temperature, an activation energy of 1.25 eV for the time to breakdown and a 1/E model extrapolating the lifetime are found. A maximum gate operation voltage at 298 K of 4.9 V is extrapolated, which decreases to a projected voltage of 3.5 V at 598 K operation temperature, due to an accelerated defect generation. The physical origin of the TDDB of Al2O3 is related to the formation of a percolation path by randomly generated defects in the oxide under stress bias. This mechanism, which also requires the presence of an initial defect density in Al2O3, is confirmed by Monte Carlo simulations, which are in agreement with the experimental data. The gate degradation mechanisms of gallium nitride (GaN)‐based metal–insulator–semiconductor high‐electron‐mobility transistors (MISHEMTs) utilizing Al2O3 grown by plasma‐enhanced atomic layer deposition (PEALD) are systematically investigated. By applying constant voltage stress and the time‐dependent dielectric breakdown methodology under variation of bias and temperature, the activation energy of the time to breakdown is found and the lifetime is extrapolated.</description><subject>activation energies</subject><subject>Al2O3</subject><subject>AlGaN/GaN metal–insulator–semiconductor high-electron-mobility transistors</subject><subject>Aluminum gallium nitrides</subject><subject>Aluminum oxide</subject><subject>Atomic layer epitaxy</subject><subject>Bias</subject><subject>Computer simulation</subject><subject>Dielectric breakdown</subject><subject>Electric potential</subject><subject>Gallium nitrides</subject><subject>High electron mobility transistors</subject><subject>High temperature</subject><subject>Metalorganic chemical vapor deposition</subject><subject>MIS (semiconductors)</subject><subject>Organic chemicals</subject><subject>Organic chemistry</subject><subject>Percolation</subject><subject>reliability</subject><subject>Semiconductor devices</subject><subject>Silicon substrates</subject><subject>Time dependence</subject><subject>time-dependent dielectric breakdown</subject><subject>Transistors</subject><subject>Voltage</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kU1LAzEQhhdRsH5cPQc81-Zju5s9lqqtUK3Y6nWZ3WQ1Jd2sSdbSmz9B8AcK_hLTqoWEeWcYnhnmjaIzgi8IxrTXOAcXFJMM4yRL96IO4QntJoxk-zuN8WF05NwC47gfp6QTfU3UUnnwytQOVcaiB6kVFFqiaSPtto7Aoyst38BLgeZyua23VjpkKjTQdMp6Az2Cu1746FZ60N_vnze1azV4Y4OeyaUqTS3aMuRorJ5fvt8_ArH01tRB3ppCaeXXaG6hdsqFLodG1qxqVKz_iR9T-wy1KtHwZYMDjZ6gCbhL2RintnuGNwugchPbwvmwpjyJDirQTp7-xePo8fpqPhx3J9PRzXAw6TaUsbTLM44ZharilJC0wLTfj8O14pIIIKxg_bQoqBBpFa4LmKVcJFUiSi4IEUTymB1H57_cxprXVjqfL0xr6zAypywjKWcs4aEr--1aKS3XeWPVEuw6JzjfOJhvHMx3Dub3s9lgl7EflpSbiQ</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Heuken, Lars</creator><creator>Ottaviani, Alessandro</creator><creator>Fahle, Dirk</creator><creator>Zweipfennig, Thorsten</creator><creator>Lükens, Gerrit</creator><creator>Kalisch, Holger</creator><creator>Vescan, Andrei</creator><creator>Heuken, Michael</creator><creator>Burghartz, Joachim N.</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0158-4189</orcidid></search><sort><creationdate>202004</creationdate><title>Limitations for Reliable Operation at Elevated Temperatures of Al2O3/AlGaN/GaN Metal–Insulator–Semiconductor High‐Electron‐Mobility Transistors Grown by Metal‐Organic Chemical Vapor Deposition on Silicon Substrate</title><author>Heuken, Lars ; Ottaviani, Alessandro ; Fahle, Dirk ; Zweipfennig, Thorsten ; Lükens, Gerrit ; Kalisch, Holger ; Vescan, Andrei ; Heuken, Michael ; Burghartz, Joachim N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2337-898032aff82117b025546304c1da13b357bb2dd7f190a0378d6f6dc8d11d1e843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>activation energies</topic><topic>Al2O3</topic><topic>AlGaN/GaN metal–insulator–semiconductor high-electron-mobility transistors</topic><topic>Aluminum gallium nitrides</topic><topic>Aluminum oxide</topic><topic>Atomic layer epitaxy</topic><topic>Bias</topic><topic>Computer simulation</topic><topic>Dielectric breakdown</topic><topic>Electric potential</topic><topic>Gallium nitrides</topic><topic>High electron mobility transistors</topic><topic>High temperature</topic><topic>Metalorganic chemical vapor deposition</topic><topic>MIS (semiconductors)</topic><topic>Organic chemicals</topic><topic>Organic chemistry</topic><topic>Percolation</topic><topic>reliability</topic><topic>Semiconductor devices</topic><topic>Silicon substrates</topic><topic>Time dependence</topic><topic>time-dependent dielectric breakdown</topic><topic>Transistors</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heuken, Lars</creatorcontrib><creatorcontrib>Ottaviani, Alessandro</creatorcontrib><creatorcontrib>Fahle, Dirk</creatorcontrib><creatorcontrib>Zweipfennig, Thorsten</creatorcontrib><creatorcontrib>Lükens, Gerrit</creatorcontrib><creatorcontrib>Kalisch, Holger</creatorcontrib><creatorcontrib>Vescan, Andrei</creatorcontrib><creatorcontrib>Heuken, Michael</creatorcontrib><creatorcontrib>Burghartz, Joachim N.</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heuken, Lars</au><au>Ottaviani, Alessandro</au><au>Fahle, Dirk</au><au>Zweipfennig, Thorsten</au><au>Lükens, Gerrit</au><au>Kalisch, Holger</au><au>Vescan, Andrei</au><au>Heuken, Michael</au><au>Burghartz, Joachim N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limitations for Reliable Operation at Elevated Temperatures of Al2O3/AlGaN/GaN Metal–Insulator–Semiconductor High‐Electron‐Mobility Transistors Grown by Metal‐Organic Chemical Vapor Deposition on Silicon Substrate</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2020-04</date><risdate>2020</risdate><volume>217</volume><issue>7</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Herein, the gate degradation mechanisms of gallium nitride (GaN)‐based metal–insulator–semiconductor high‐electron‐mobility transistors (MISHEMTs) utilizing Al2O3 grown by plasma‐enhanced atomic layer deposition (PEALD) are systematically investigated. By applying constant voltage stress and the time‐dependent dielectric breakdown (TDDB) methodology under variation of bias and temperature, an activation energy of 1.25 eV for the time to breakdown and a 1/E model extrapolating the lifetime are found. A maximum gate operation voltage at 298 K of 4.9 V is extrapolated, which decreases to a projected voltage of 3.5 V at 598 K operation temperature, due to an accelerated defect generation. The physical origin of the TDDB of Al2O3 is related to the formation of a percolation path by randomly generated defects in the oxide under stress bias. This mechanism, which also requires the presence of an initial defect density in Al2O3, is confirmed by Monte Carlo simulations, which are in agreement with the experimental data. The gate degradation mechanisms of gallium nitride (GaN)‐based metal–insulator–semiconductor high‐electron‐mobility transistors (MISHEMTs) utilizing Al2O3 grown by plasma‐enhanced atomic layer deposition (PEALD) are systematically investigated. By applying constant voltage stress and the time‐dependent dielectric breakdown methodology under variation of bias and temperature, the activation energy of the time to breakdown is found and the lifetime is extrapolated.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.201900697</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0158-4189</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2020-04, Vol.217 (7), p.n/a
issn 1862-6300
1862-6319
language eng
recordid cdi_proquest_journals_2391783368
source Access via Wiley Online Library
subjects activation energies
Al2O3
AlGaN/GaN metal–insulator–semiconductor high-electron-mobility transistors
Aluminum gallium nitrides
Aluminum oxide
Atomic layer epitaxy
Bias
Computer simulation
Dielectric breakdown
Electric potential
Gallium nitrides
High electron mobility transistors
High temperature
Metalorganic chemical vapor deposition
MIS (semiconductors)
Organic chemicals
Organic chemistry
Percolation
reliability
Semiconductor devices
Silicon substrates
Time dependence
time-dependent dielectric breakdown
Transistors
Voltage
title Limitations for Reliable Operation at Elevated Temperatures of Al2O3/AlGaN/GaN Metal–Insulator–Semiconductor High‐Electron‐Mobility Transistors Grown by Metal‐Organic Chemical Vapor Deposition on Silicon Substrate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A48%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limitations%20for%20Reliable%20Operation%20at%20Elevated%20Temperatures%20of%20Al2O3/AlGaN/GaN%20Metal%E2%80%93Insulator%E2%80%93Semiconductor%20High%E2%80%90Electron%E2%80%90Mobility%20Transistors%20Grown%20by%20Metal%E2%80%90Organic%20Chemical%20Vapor%20Deposition%20on%20Silicon%20Substrate&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Heuken,%20Lars&rft.date=2020-04&rft.volume=217&rft.issue=7&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.201900697&rft_dat=%3Cproquest_wiley%3E2391783368%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2391783368&rft_id=info:pmid/&rfr_iscdi=true