Effect of microstructure of simulated heat‐affected zone on low‐ to high‐cycle fatigue properties of low‐carbon steels

To clarify the effect of microstructural changes on the fatigue property of the weld heat‐affected zone (HAZ), low‐ to high‐cycle fatigue tests were conducted on 16 types of simulated HAZ specimens that had been prepared using thermal processes. The results showed the fatigue S‐N curves of the HAZ t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fatigue & fracture of engineering materials & structures 2020-06, Vol.43 (6), p.1239-1249
Hauptverfasser: Nishikawa, Hide‐aki, Furuya, Yoshiyuki, Igi, Satoshi, Goto, Sota, Briffod, Fabien, Shiraiwa, Takayuki, Enoki, Manabu, Kasuya, Tadashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1249
container_issue 6
container_start_page 1239
container_title Fatigue & fracture of engineering materials & structures
container_volume 43
creator Nishikawa, Hide‐aki
Furuya, Yoshiyuki
Igi, Satoshi
Goto, Sota
Briffod, Fabien
Shiraiwa, Takayuki
Enoki, Manabu
Kasuya, Tadashi
description To clarify the effect of microstructural changes on the fatigue property of the weld heat‐affected zone (HAZ), low‐ to high‐cycle fatigue tests were conducted on 16 types of simulated HAZ specimens that had been prepared using thermal processes. The results showed the fatigue S‐N curves of the HAZ to be widely scattered as a function of strength level. These fatigue data were divided into two groups: coarse grain (CG) and fine grain (FG) HAZ, when strain amplitude was used to represent S‐N curves. The fatigue data for the CGHAZ group showed a relatively short fatigue life. Based on surface observations, the initiated fatigue crack size of CGHAZ was larger than that of FGHAZ as a function of microstructural unit size. Hence, fatigue crack growth life, which is almost the same as total fatigue life of CGHAZ, decreased.
doi_str_mv 10.1111/ffe.13217
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2391755508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2391755508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3637-abbf0bfad3b8336e26f415c5539af2655d826c8761849cdd29c511e6fee355a33</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqUw8AaWmBjSxnbsJCOqWkCqxAISm-U459ZV2hTbUVUGxCPwjDwJDmHlFp9P3_-f_SN0TdIJiTU1BiaEUZKfoBHJRJpQUfJTNCpyLpKcF6_n6ML7TZoSkTE2Qh_zqNABtwZvrXatD67ToXPQT7zddo0KUOM1qPD9-aV-4Xh_b3eR2OGmPcQxDi1e29U6tvqoG8BGBbvqAO9duwcXLPjeboC1clVU-gDQ-Et0ZlTj4ervHKOXxfx59pAsn-4fZ3fLRDPB8kRVlUkro2pWFYwJoMJkhGvOWakMFZzXBRW6yAUpslLXNS01JwSEAWCcK8bG6GbwjS9668AHuWk7t4srJWUlyTnnaRGp24Hqg_AOjNw7u1XuKEkq-3hl_L_8jTey04E92AaO_4NysZgPih8aFIHN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391755508</pqid></control><display><type>article</type><title>Effect of microstructure of simulated heat‐affected zone on low‐ to high‐cycle fatigue properties of low‐carbon steels</title><source>Access via Wiley Online Library</source><creator>Nishikawa, Hide‐aki ; Furuya, Yoshiyuki ; Igi, Satoshi ; Goto, Sota ; Briffod, Fabien ; Shiraiwa, Takayuki ; Enoki, Manabu ; Kasuya, Tadashi</creator><creatorcontrib>Nishikawa, Hide‐aki ; Furuya, Yoshiyuki ; Igi, Satoshi ; Goto, Sota ; Briffod, Fabien ; Shiraiwa, Takayuki ; Enoki, Manabu ; Kasuya, Tadashi</creatorcontrib><description>To clarify the effect of microstructural changes on the fatigue property of the weld heat‐affected zone (HAZ), low‐ to high‐cycle fatigue tests were conducted on 16 types of simulated HAZ specimens that had been prepared using thermal processes. The results showed the fatigue S‐N curves of the HAZ to be widely scattered as a function of strength level. These fatigue data were divided into two groups: coarse grain (CG) and fine grain (FG) HAZ, when strain amplitude was used to represent S‐N curves. The fatigue data for the CGHAZ group showed a relatively short fatigue life. Based on surface observations, the initiated fatigue crack size of CGHAZ was larger than that of FGHAZ as a function of microstructural unit size. Hence, fatigue crack growth life, which is almost the same as total fatigue life of CGHAZ, decreased.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/ffe.13217</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Carbon steels ; Crack propagation ; fatigue ; Fatigue failure ; Fatigue life ; Fatigue tests ; Fracture mechanics ; Heat affected zone ; Heat treating ; low‐carbon steel ; Microstructure ; welding</subject><ispartof>Fatigue &amp; fracture of engineering materials &amp; structures, 2020-06, Vol.43 (6), p.1239-1249</ispartof><rights>2020 Wiley Publishing Ltd.</rights><rights>2020 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3637-abbf0bfad3b8336e26f415c5539af2655d826c8761849cdd29c511e6fee355a33</citedby><cites>FETCH-LOGICAL-c3637-abbf0bfad3b8336e26f415c5539af2655d826c8761849cdd29c511e6fee355a33</cites><orcidid>0000-0002-2484-6903</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fffe.13217$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fffe.13217$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Nishikawa, Hide‐aki</creatorcontrib><creatorcontrib>Furuya, Yoshiyuki</creatorcontrib><creatorcontrib>Igi, Satoshi</creatorcontrib><creatorcontrib>Goto, Sota</creatorcontrib><creatorcontrib>Briffod, Fabien</creatorcontrib><creatorcontrib>Shiraiwa, Takayuki</creatorcontrib><creatorcontrib>Enoki, Manabu</creatorcontrib><creatorcontrib>Kasuya, Tadashi</creatorcontrib><title>Effect of microstructure of simulated heat‐affected zone on low‐ to high‐cycle fatigue properties of low‐carbon steels</title><title>Fatigue &amp; fracture of engineering materials &amp; structures</title><description>To clarify the effect of microstructural changes on the fatigue property of the weld heat‐affected zone (HAZ), low‐ to high‐cycle fatigue tests were conducted on 16 types of simulated HAZ specimens that had been prepared using thermal processes. The results showed the fatigue S‐N curves of the HAZ to be widely scattered as a function of strength level. These fatigue data were divided into two groups: coarse grain (CG) and fine grain (FG) HAZ, when strain amplitude was used to represent S‐N curves. The fatigue data for the CGHAZ group showed a relatively short fatigue life. Based on surface observations, the initiated fatigue crack size of CGHAZ was larger than that of FGHAZ as a function of microstructural unit size. Hence, fatigue crack growth life, which is almost the same as total fatigue life of CGHAZ, decreased.</description><subject>Carbon steels</subject><subject>Crack propagation</subject><subject>fatigue</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Fatigue tests</subject><subject>Fracture mechanics</subject><subject>Heat affected zone</subject><subject>Heat treating</subject><subject>low‐carbon steel</subject><subject>Microstructure</subject><subject>welding</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqUw8AaWmBjSxnbsJCOqWkCqxAISm-U459ZV2hTbUVUGxCPwjDwJDmHlFp9P3_-f_SN0TdIJiTU1BiaEUZKfoBHJRJpQUfJTNCpyLpKcF6_n6ML7TZoSkTE2Qh_zqNABtwZvrXatD67ToXPQT7zddo0KUOM1qPD9-aV-4Xh_b3eR2OGmPcQxDi1e29U6tvqoG8BGBbvqAO9duwcXLPjeboC1clVU-gDQ-Et0ZlTj4ervHKOXxfx59pAsn-4fZ3fLRDPB8kRVlUkro2pWFYwJoMJkhGvOWakMFZzXBRW6yAUpslLXNS01JwSEAWCcK8bG6GbwjS9668AHuWk7t4srJWUlyTnnaRGp24Hqg_AOjNw7u1XuKEkq-3hl_L_8jTey04E92AaO_4NysZgPih8aFIHN</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Nishikawa, Hide‐aki</creator><creator>Furuya, Yoshiyuki</creator><creator>Igi, Satoshi</creator><creator>Goto, Sota</creator><creator>Briffod, Fabien</creator><creator>Shiraiwa, Takayuki</creator><creator>Enoki, Manabu</creator><creator>Kasuya, Tadashi</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-2484-6903</orcidid></search><sort><creationdate>202006</creationdate><title>Effect of microstructure of simulated heat‐affected zone on low‐ to high‐cycle fatigue properties of low‐carbon steels</title><author>Nishikawa, Hide‐aki ; Furuya, Yoshiyuki ; Igi, Satoshi ; Goto, Sota ; Briffod, Fabien ; Shiraiwa, Takayuki ; Enoki, Manabu ; Kasuya, Tadashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3637-abbf0bfad3b8336e26f415c5539af2655d826c8761849cdd29c511e6fee355a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon steels</topic><topic>Crack propagation</topic><topic>fatigue</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Fatigue tests</topic><topic>Fracture mechanics</topic><topic>Heat affected zone</topic><topic>Heat treating</topic><topic>low‐carbon steel</topic><topic>Microstructure</topic><topic>welding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishikawa, Hide‐aki</creatorcontrib><creatorcontrib>Furuya, Yoshiyuki</creatorcontrib><creatorcontrib>Igi, Satoshi</creatorcontrib><creatorcontrib>Goto, Sota</creatorcontrib><creatorcontrib>Briffod, Fabien</creatorcontrib><creatorcontrib>Shiraiwa, Takayuki</creatorcontrib><creatorcontrib>Enoki, Manabu</creatorcontrib><creatorcontrib>Kasuya, Tadashi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishikawa, Hide‐aki</au><au>Furuya, Yoshiyuki</au><au>Igi, Satoshi</au><au>Goto, Sota</au><au>Briffod, Fabien</au><au>Shiraiwa, Takayuki</au><au>Enoki, Manabu</au><au>Kasuya, Tadashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of microstructure of simulated heat‐affected zone on low‐ to high‐cycle fatigue properties of low‐carbon steels</atitle><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle><date>2020-06</date><risdate>2020</risdate><volume>43</volume><issue>6</issue><spage>1239</spage><epage>1249</epage><pages>1239-1249</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><abstract>To clarify the effect of microstructural changes on the fatigue property of the weld heat‐affected zone (HAZ), low‐ to high‐cycle fatigue tests were conducted on 16 types of simulated HAZ specimens that had been prepared using thermal processes. The results showed the fatigue S‐N curves of the HAZ to be widely scattered as a function of strength level. These fatigue data were divided into two groups: coarse grain (CG) and fine grain (FG) HAZ, when strain amplitude was used to represent S‐N curves. The fatigue data for the CGHAZ group showed a relatively short fatigue life. Based on surface observations, the initiated fatigue crack size of CGHAZ was larger than that of FGHAZ as a function of microstructural unit size. Hence, fatigue crack growth life, which is almost the same as total fatigue life of CGHAZ, decreased.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ffe.13217</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2484-6903</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 8756-758X
ispartof Fatigue & fracture of engineering materials & structures, 2020-06, Vol.43 (6), p.1239-1249
issn 8756-758X
1460-2695
language eng
recordid cdi_proquest_journals_2391755508
source Access via Wiley Online Library
subjects Carbon steels
Crack propagation
fatigue
Fatigue failure
Fatigue life
Fatigue tests
Fracture mechanics
Heat affected zone
Heat treating
low‐carbon steel
Microstructure
welding
title Effect of microstructure of simulated heat‐affected zone on low‐ to high‐cycle fatigue properties of low‐carbon steels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A37%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20microstructure%20of%20simulated%20heat%E2%80%90affected%20zone%20on%20low%E2%80%90%20to%20high%E2%80%90cycle%20fatigue%20properties%20of%20low%E2%80%90carbon%20steels&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=Nishikawa,%20Hide%E2%80%90aki&rft.date=2020-06&rft.volume=43&rft.issue=6&rft.spage=1239&rft.epage=1249&rft.pages=1239-1249&rft.issn=8756-758X&rft.eissn=1460-2695&rft_id=info:doi/10.1111/ffe.13217&rft_dat=%3Cproquest_cross%3E2391755508%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2391755508&rft_id=info:pmid/&rfr_iscdi=true