Effect of microstructure of simulated heat‐affected zone on low‐ to high‐cycle fatigue properties of low‐carbon steels
To clarify the effect of microstructural changes on the fatigue property of the weld heat‐affected zone (HAZ), low‐ to high‐cycle fatigue tests were conducted on 16 types of simulated HAZ specimens that had been prepared using thermal processes. The results showed the fatigue S‐N curves of the HAZ t...
Gespeichert in:
Veröffentlicht in: | Fatigue & fracture of engineering materials & structures 2020-06, Vol.43 (6), p.1239-1249 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1249 |
---|---|
container_issue | 6 |
container_start_page | 1239 |
container_title | Fatigue & fracture of engineering materials & structures |
container_volume | 43 |
creator | Nishikawa, Hide‐aki Furuya, Yoshiyuki Igi, Satoshi Goto, Sota Briffod, Fabien Shiraiwa, Takayuki Enoki, Manabu Kasuya, Tadashi |
description | To clarify the effect of microstructural changes on the fatigue property of the weld heat‐affected zone (HAZ), low‐ to high‐cycle fatigue tests were conducted on 16 types of simulated HAZ specimens that had been prepared using thermal processes. The results showed the fatigue S‐N curves of the HAZ to be widely scattered as a function of strength level. These fatigue data were divided into two groups: coarse grain (CG) and fine grain (FG) HAZ, when strain amplitude was used to represent S‐N curves. The fatigue data for the CGHAZ group showed a relatively short fatigue life. Based on surface observations, the initiated fatigue crack size of CGHAZ was larger than that of FGHAZ as a function of microstructural unit size. Hence, fatigue crack growth life, which is almost the same as total fatigue life of CGHAZ, decreased. |
doi_str_mv | 10.1111/ffe.13217 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2391755508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2391755508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3637-abbf0bfad3b8336e26f415c5539af2655d826c8761849cdd29c511e6fee355a33</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqUw8AaWmBjSxnbsJCOqWkCqxAISm-U459ZV2hTbUVUGxCPwjDwJDmHlFp9P3_-f_SN0TdIJiTU1BiaEUZKfoBHJRJpQUfJTNCpyLpKcF6_n6ML7TZoSkTE2Qh_zqNABtwZvrXatD67ToXPQT7zddo0KUOM1qPD9-aV-4Xh_b3eR2OGmPcQxDi1e29U6tvqoG8BGBbvqAO9duwcXLPjeboC1clVU-gDQ-Et0ZlTj4ervHKOXxfx59pAsn-4fZ3fLRDPB8kRVlUkro2pWFYwJoMJkhGvOWakMFZzXBRW6yAUpslLXNS01JwSEAWCcK8bG6GbwjS9668AHuWk7t4srJWUlyTnnaRGp24Hqg_AOjNw7u1XuKEkq-3hl_L_8jTey04E92AaO_4NysZgPih8aFIHN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391755508</pqid></control><display><type>article</type><title>Effect of microstructure of simulated heat‐affected zone on low‐ to high‐cycle fatigue properties of low‐carbon steels</title><source>Access via Wiley Online Library</source><creator>Nishikawa, Hide‐aki ; Furuya, Yoshiyuki ; Igi, Satoshi ; Goto, Sota ; Briffod, Fabien ; Shiraiwa, Takayuki ; Enoki, Manabu ; Kasuya, Tadashi</creator><creatorcontrib>Nishikawa, Hide‐aki ; Furuya, Yoshiyuki ; Igi, Satoshi ; Goto, Sota ; Briffod, Fabien ; Shiraiwa, Takayuki ; Enoki, Manabu ; Kasuya, Tadashi</creatorcontrib><description>To clarify the effect of microstructural changes on the fatigue property of the weld heat‐affected zone (HAZ), low‐ to high‐cycle fatigue tests were conducted on 16 types of simulated HAZ specimens that had been prepared using thermal processes. The results showed the fatigue S‐N curves of the HAZ to be widely scattered as a function of strength level. These fatigue data were divided into two groups: coarse grain (CG) and fine grain (FG) HAZ, when strain amplitude was used to represent S‐N curves. The fatigue data for the CGHAZ group showed a relatively short fatigue life. Based on surface observations, the initiated fatigue crack size of CGHAZ was larger than that of FGHAZ as a function of microstructural unit size. Hence, fatigue crack growth life, which is almost the same as total fatigue life of CGHAZ, decreased.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/ffe.13217</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Carbon steels ; Crack propagation ; fatigue ; Fatigue failure ; Fatigue life ; Fatigue tests ; Fracture mechanics ; Heat affected zone ; Heat treating ; low‐carbon steel ; Microstructure ; welding</subject><ispartof>Fatigue & fracture of engineering materials & structures, 2020-06, Vol.43 (6), p.1239-1249</ispartof><rights>2020 Wiley Publishing Ltd.</rights><rights>2020 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3637-abbf0bfad3b8336e26f415c5539af2655d826c8761849cdd29c511e6fee355a33</citedby><cites>FETCH-LOGICAL-c3637-abbf0bfad3b8336e26f415c5539af2655d826c8761849cdd29c511e6fee355a33</cites><orcidid>0000-0002-2484-6903</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fffe.13217$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fffe.13217$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Nishikawa, Hide‐aki</creatorcontrib><creatorcontrib>Furuya, Yoshiyuki</creatorcontrib><creatorcontrib>Igi, Satoshi</creatorcontrib><creatorcontrib>Goto, Sota</creatorcontrib><creatorcontrib>Briffod, Fabien</creatorcontrib><creatorcontrib>Shiraiwa, Takayuki</creatorcontrib><creatorcontrib>Enoki, Manabu</creatorcontrib><creatorcontrib>Kasuya, Tadashi</creatorcontrib><title>Effect of microstructure of simulated heat‐affected zone on low‐ to high‐cycle fatigue properties of low‐carbon steels</title><title>Fatigue & fracture of engineering materials & structures</title><description>To clarify the effect of microstructural changes on the fatigue property of the weld heat‐affected zone (HAZ), low‐ to high‐cycle fatigue tests were conducted on 16 types of simulated HAZ specimens that had been prepared using thermal processes. The results showed the fatigue S‐N curves of the HAZ to be widely scattered as a function of strength level. These fatigue data were divided into two groups: coarse grain (CG) and fine grain (FG) HAZ, when strain amplitude was used to represent S‐N curves. The fatigue data for the CGHAZ group showed a relatively short fatigue life. Based on surface observations, the initiated fatigue crack size of CGHAZ was larger than that of FGHAZ as a function of microstructural unit size. Hence, fatigue crack growth life, which is almost the same as total fatigue life of CGHAZ, decreased.</description><subject>Carbon steels</subject><subject>Crack propagation</subject><subject>fatigue</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Fatigue tests</subject><subject>Fracture mechanics</subject><subject>Heat affected zone</subject><subject>Heat treating</subject><subject>low‐carbon steel</subject><subject>Microstructure</subject><subject>welding</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqUw8AaWmBjSxnbsJCOqWkCqxAISm-U459ZV2hTbUVUGxCPwjDwJDmHlFp9P3_-f_SN0TdIJiTU1BiaEUZKfoBHJRJpQUfJTNCpyLpKcF6_n6ML7TZoSkTE2Qh_zqNABtwZvrXatD67ToXPQT7zddo0KUOM1qPD9-aV-4Xh_b3eR2OGmPcQxDi1e29U6tvqoG8BGBbvqAO9duwcXLPjeboC1clVU-gDQ-Et0ZlTj4ervHKOXxfx59pAsn-4fZ3fLRDPB8kRVlUkro2pWFYwJoMJkhGvOWakMFZzXBRW6yAUpslLXNS01JwSEAWCcK8bG6GbwjS9668AHuWk7t4srJWUlyTnnaRGp24Hqg_AOjNw7u1XuKEkq-3hl_L_8jTey04E92AaO_4NysZgPih8aFIHN</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Nishikawa, Hide‐aki</creator><creator>Furuya, Yoshiyuki</creator><creator>Igi, Satoshi</creator><creator>Goto, Sota</creator><creator>Briffod, Fabien</creator><creator>Shiraiwa, Takayuki</creator><creator>Enoki, Manabu</creator><creator>Kasuya, Tadashi</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-2484-6903</orcidid></search><sort><creationdate>202006</creationdate><title>Effect of microstructure of simulated heat‐affected zone on low‐ to high‐cycle fatigue properties of low‐carbon steels</title><author>Nishikawa, Hide‐aki ; Furuya, Yoshiyuki ; Igi, Satoshi ; Goto, Sota ; Briffod, Fabien ; Shiraiwa, Takayuki ; Enoki, Manabu ; Kasuya, Tadashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3637-abbf0bfad3b8336e26f415c5539af2655d826c8761849cdd29c511e6fee355a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon steels</topic><topic>Crack propagation</topic><topic>fatigue</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Fatigue tests</topic><topic>Fracture mechanics</topic><topic>Heat affected zone</topic><topic>Heat treating</topic><topic>low‐carbon steel</topic><topic>Microstructure</topic><topic>welding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishikawa, Hide‐aki</creatorcontrib><creatorcontrib>Furuya, Yoshiyuki</creatorcontrib><creatorcontrib>Igi, Satoshi</creatorcontrib><creatorcontrib>Goto, Sota</creatorcontrib><creatorcontrib>Briffod, Fabien</creatorcontrib><creatorcontrib>Shiraiwa, Takayuki</creatorcontrib><creatorcontrib>Enoki, Manabu</creatorcontrib><creatorcontrib>Kasuya, Tadashi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue & fracture of engineering materials & structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishikawa, Hide‐aki</au><au>Furuya, Yoshiyuki</au><au>Igi, Satoshi</au><au>Goto, Sota</au><au>Briffod, Fabien</au><au>Shiraiwa, Takayuki</au><au>Enoki, Manabu</au><au>Kasuya, Tadashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of microstructure of simulated heat‐affected zone on low‐ to high‐cycle fatigue properties of low‐carbon steels</atitle><jtitle>Fatigue & fracture of engineering materials & structures</jtitle><date>2020-06</date><risdate>2020</risdate><volume>43</volume><issue>6</issue><spage>1239</spage><epage>1249</epage><pages>1239-1249</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><abstract>To clarify the effect of microstructural changes on the fatigue property of the weld heat‐affected zone (HAZ), low‐ to high‐cycle fatigue tests were conducted on 16 types of simulated HAZ specimens that had been prepared using thermal processes. The results showed the fatigue S‐N curves of the HAZ to be widely scattered as a function of strength level. These fatigue data were divided into two groups: coarse grain (CG) and fine grain (FG) HAZ, when strain amplitude was used to represent S‐N curves. The fatigue data for the CGHAZ group showed a relatively short fatigue life. Based on surface observations, the initiated fatigue crack size of CGHAZ was larger than that of FGHAZ as a function of microstructural unit size. Hence, fatigue crack growth life, which is almost the same as total fatigue life of CGHAZ, decreased.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ffe.13217</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2484-6903</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-758X |
ispartof | Fatigue & fracture of engineering materials & structures, 2020-06, Vol.43 (6), p.1239-1249 |
issn | 8756-758X 1460-2695 |
language | eng |
recordid | cdi_proquest_journals_2391755508 |
source | Access via Wiley Online Library |
subjects | Carbon steels Crack propagation fatigue Fatigue failure Fatigue life Fatigue tests Fracture mechanics Heat affected zone Heat treating low‐carbon steel Microstructure welding |
title | Effect of microstructure of simulated heat‐affected zone on low‐ to high‐cycle fatigue properties of low‐carbon steels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A37%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20microstructure%20of%20simulated%20heat%E2%80%90affected%20zone%20on%20low%E2%80%90%20to%20high%E2%80%90cycle%20fatigue%20properties%20of%20low%E2%80%90carbon%20steels&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=Nishikawa,%20Hide%E2%80%90aki&rft.date=2020-06&rft.volume=43&rft.issue=6&rft.spage=1239&rft.epage=1249&rft.pages=1239-1249&rft.issn=8756-758X&rft.eissn=1460-2695&rft_id=info:doi/10.1111/ffe.13217&rft_dat=%3Cproquest_cross%3E2391755508%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2391755508&rft_id=info:pmid/&rfr_iscdi=true |