Development and Evaluation of an Evolutionary Programming-Based Tropical Cyclone Intensity Model
A statistical-dynamical tropical cyclone (TC) intensity model is developed from a large ensemble of algorithms through evolutionary programming (EP). EP mimics the evolutionary principles of genetic information, reproduction, and mutation to develop a population of algorithms with skillful predictor...
Gespeichert in:
Veröffentlicht in: | Monthly weather review 2020-05, Vol.148 (5), p.1951-1970 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A statistical-dynamical tropical cyclone (TC) intensity model is developed from a large ensemble of algorithms through evolutionary programming (EP). EP mimics the evolutionary principles of genetic information, reproduction, and mutation to develop a population of algorithms with skillful predictor combinations. From this evolutionary process the 100 most skillful algorithms as determined by root-mean square error on validation data are kept and bias corrected. Bayesian model combination is used to assign weights to a subset of 10 skillful yet diverse algorithms from this list. The resulting algorithm combination produces a forecast superior in skill to that from any individual algorithm. Using these methods, two models are developed to give deterministic and probabilistic forecasts for TC intensity every 12 h out to 120 h: one each for the North Atlantic and eastern and central North Pacific basins. Deterministic performance, as defined by MAE, exceeds that of a "no skill" forecast in the North Atlantic to 96 h and is competitive with the operational Statistical Hurricane Intensity Prediction Scheme and Logistic Growth Equation Model at these times. In the eastern and central North Pacific, deterministic skill is comparable to the blended 5-day climatology and persistence (CLP5) track and decay-SHIFOR (DSHF) intensity forecast (OCD5) only to 24 h, after which time it is generally less skillful than OCD5 and all operational guidance. Probabilistic rapid intensification forecasts at the 25-30 kt (24 h)(-1) thresholds, particularly in the Atlantic, are skillful relative to climatology and competitive with operational guidance when subjectively calibrated; however, probabilistic rapid weakening forecasts are not skillful relative to climatology at any threshold in either basin. Case studies are analyzed to give more insight into model behavior and performance. |
---|---|
ISSN: | 0027-0644 1520-0493 |
DOI: | 10.1175/MWR-D-19-0346.1 |