Vehicular-OBUs-As-On-Demand-Fogs: Resource and Context Aware Deployment of Containerized Micro-Services
Observing the headway in vehicular industry, new applications are developed demanding more resources. For instance, real-time vehicular applications require fast processing of the vast amount of generated data by vehicles in order to maintain service availability and reachability while driving. Fog...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on networking 2020-04, Vol.28 (2), p.778-790 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 790 |
---|---|
container_issue | 2 |
container_start_page | 778 |
container_title | IEEE/ACM transactions on networking |
container_volume | 28 |
creator | Sami, Hani Mourad, Azzam El-Hajj, Wassim |
description | Observing the headway in vehicular industry, new applications are developed demanding more resources. For instance, real-time vehicular applications require fast processing of the vast amount of generated data by vehicles in order to maintain service availability and reachability while driving. Fog devices are capable of bringing cloud intelligence near the edge, making them a suitable candidate to process vehicular requests. However, their location, processing power, and technology used to host and update services affect their availability and performance while considering the mobility patterns of vehicles. In this paper, we overcome the aforementioned limitations by taking advantage of the evolvement of On-Board Units, Kubeadm Clustering, Docker Containerization, and micro-services technologies. In this context, we propose an efficient resource and context aware approach for deploying containerized micro-services on on-demand fogs called Vehicular-OBUs-As-On-Demand-Fogs. Our proposed scheme embeds (1) a Kubeadm based approach for clustering OBUs and enabling on-demand micro-services deployment with the least costs and time using Docker containerization technology, (2) a hybrid multi-layered networking architecture to maintain reachability between the requesting user and available vehicular fog cluster, and (3) a vehicular multi-objective container placement model for producing efficient vehicles selection and services distribution. An Evolutionary Memetic Algorithm is elaborated to solve our vehicular container placement problem. Experiments and simulations demonstrate the relevance and efficiency of our approach compared to other recent techniques in the literature. |
doi_str_mv | 10.1109/TNET.2020.2973800 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2391266175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9032323</ieee_id><sourcerecordid>2391266175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-aed5ba217b35535758cf316c2e4eeee8922e899e24026e74a651253526a787063</originalsourceid><addsrcrecordid>eNo9kN1OAjEQhRujiYg-gPGmidfFdkq7W--QHzVBSRS8bcoyi0tgF9tFxae3CLGTtJP2m86ZQ8il4C0huLkZP_fHLeDAW2ASmXJ-RBpCqZSB0vo45lxLprWBU3IWwoJzITnoBpm_4XuRbZbOs9HdJLBOYKOS9XDlyhkbVPNwS18wVBufIY1XtFuVNX7XtPPlPNIerpfVdoVlTav8780VJfriB2f0qch8xV7RfxYZhnNykrtlwIvD2SSTQX_cfWDD0f1jtzNkGRhZM4czNXUgkqlUSqpEpVkuhc4A2xhXagDiZhDaUT0mbaeVgAiCdkmaxBmb5Hr_79pXHxsMtV1E8WVsaUEaAVqLREVK7KkoMQSPuV37YuX81gpud37anZ9256c9-BlrrvY1RRTyzxsuIYb8BT_jcCc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391266175</pqid></control><display><type>article</type><title>Vehicular-OBUs-As-On-Demand-Fogs: Resource and Context Aware Deployment of Containerized Micro-Services</title><source>IEEE Electronic Library (IEL)</source><creator>Sami, Hani ; Mourad, Azzam ; El-Hajj, Wassim</creator><creatorcontrib>Sami, Hani ; Mourad, Azzam ; El-Hajj, Wassim</creatorcontrib><description>Observing the headway in vehicular industry, new applications are developed demanding more resources. For instance, real-time vehicular applications require fast processing of the vast amount of generated data by vehicles in order to maintain service availability and reachability while driving. Fog devices are capable of bringing cloud intelligence near the edge, making them a suitable candidate to process vehicular requests. However, their location, processing power, and technology used to host and update services affect their availability and performance while considering the mobility patterns of vehicles. In this paper, we overcome the aforementioned limitations by taking advantage of the evolvement of On-Board Units, Kubeadm Clustering, Docker Containerization, and micro-services technologies. In this context, we propose an efficient resource and context aware approach for deploying containerized micro-services on on-demand fogs called Vehicular-OBUs-As-On-Demand-Fogs. Our proposed scheme embeds (1) a Kubeadm based approach for clustering OBUs and enabling on-demand micro-services deployment with the least costs and time using Docker containerization technology, (2) a hybrid multi-layered networking architecture to maintain reachability between the requesting user and available vehicular fog cluster, and (3) a vehicular multi-objective container placement model for producing efficient vehicles selection and services distribution. An Evolutionary Memetic Algorithm is elaborated to solve our vehicular container placement problem. Experiments and simulations demonstrate the relevance and efficiency of our approach compared to other recent techniques in the literature.</description><identifier>ISSN: 1063-6692</identifier><identifier>EISSN: 1558-2566</identifier><identifier>DOI: 10.1109/TNET.2020.2973800</identifier><identifier>CODEN: IEANEP</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automobiles ; Availability ; Cloud computing ; Clustering ; Computer architecture ; Computer simulation ; container ; Containers ; Context ; Delays ; Demand ; Docker ; Driver behavior ; Evolutionary algorithms ; Fog ; Industrial development ; Kubeadm ; memetic algorithm ; micro-services ; Multilayers ; on-demand fog placement ; orchestration ; Performance evaluation ; Placement ; Task analysis ; Upgrading ; Vehicles ; vehicular clustering ; vehicular edge computing ; vehicular fog computing ; Vehicular on-boarding units (OBUs)</subject><ispartof>IEEE/ACM transactions on networking, 2020-04, Vol.28 (2), p.778-790</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-aed5ba217b35535758cf316c2e4eeee8922e899e24026e74a651253526a787063</citedby><cites>FETCH-LOGICAL-c293t-aed5ba217b35535758cf316c2e4eeee8922e899e24026e74a651253526a787063</cites><orcidid>0000-0002-6925-1006 ; 0000-0001-9434-5322 ; 0000-0002-5206-2954</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9032323$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9032323$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sami, Hani</creatorcontrib><creatorcontrib>Mourad, Azzam</creatorcontrib><creatorcontrib>El-Hajj, Wassim</creatorcontrib><title>Vehicular-OBUs-As-On-Demand-Fogs: Resource and Context Aware Deployment of Containerized Micro-Services</title><title>IEEE/ACM transactions on networking</title><addtitle>TNET</addtitle><description>Observing the headway in vehicular industry, new applications are developed demanding more resources. For instance, real-time vehicular applications require fast processing of the vast amount of generated data by vehicles in order to maintain service availability and reachability while driving. Fog devices are capable of bringing cloud intelligence near the edge, making them a suitable candidate to process vehicular requests. However, their location, processing power, and technology used to host and update services affect their availability and performance while considering the mobility patterns of vehicles. In this paper, we overcome the aforementioned limitations by taking advantage of the evolvement of On-Board Units, Kubeadm Clustering, Docker Containerization, and micro-services technologies. In this context, we propose an efficient resource and context aware approach for deploying containerized micro-services on on-demand fogs called Vehicular-OBUs-As-On-Demand-Fogs. Our proposed scheme embeds (1) a Kubeadm based approach for clustering OBUs and enabling on-demand micro-services deployment with the least costs and time using Docker containerization technology, (2) a hybrid multi-layered networking architecture to maintain reachability between the requesting user and available vehicular fog cluster, and (3) a vehicular multi-objective container placement model for producing efficient vehicles selection and services distribution. An Evolutionary Memetic Algorithm is elaborated to solve our vehicular container placement problem. Experiments and simulations demonstrate the relevance and efficiency of our approach compared to other recent techniques in the literature.</description><subject>Automobiles</subject><subject>Availability</subject><subject>Cloud computing</subject><subject>Clustering</subject><subject>Computer architecture</subject><subject>Computer simulation</subject><subject>container</subject><subject>Containers</subject><subject>Context</subject><subject>Delays</subject><subject>Demand</subject><subject>Docker</subject><subject>Driver behavior</subject><subject>Evolutionary algorithms</subject><subject>Fog</subject><subject>Industrial development</subject><subject>Kubeadm</subject><subject>memetic algorithm</subject><subject>micro-services</subject><subject>Multilayers</subject><subject>on-demand fog placement</subject><subject>orchestration</subject><subject>Performance evaluation</subject><subject>Placement</subject><subject>Task analysis</subject><subject>Upgrading</subject><subject>Vehicles</subject><subject>vehicular clustering</subject><subject>vehicular edge computing</subject><subject>vehicular fog computing</subject><subject>Vehicular on-boarding units (OBUs)</subject><issn>1063-6692</issn><issn>1558-2566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1OAjEQhRujiYg-gPGmidfFdkq7W--QHzVBSRS8bcoyi0tgF9tFxae3CLGTtJP2m86ZQ8il4C0huLkZP_fHLeDAW2ASmXJ-RBpCqZSB0vo45lxLprWBU3IWwoJzITnoBpm_4XuRbZbOs9HdJLBOYKOS9XDlyhkbVPNwS18wVBufIY1XtFuVNX7XtPPlPNIerpfVdoVlTav8780VJfriB2f0qch8xV7RfxYZhnNykrtlwIvD2SSTQX_cfWDD0f1jtzNkGRhZM4czNXUgkqlUSqpEpVkuhc4A2xhXagDiZhDaUT0mbaeVgAiCdkmaxBmb5Hr_79pXHxsMtV1E8WVsaUEaAVqLREVK7KkoMQSPuV37YuX81gpud37anZ9256c9-BlrrvY1RRTyzxsuIYb8BT_jcCc</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Sami, Hani</creator><creator>Mourad, Azzam</creator><creator>El-Hajj, Wassim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6925-1006</orcidid><orcidid>https://orcid.org/0000-0001-9434-5322</orcidid><orcidid>https://orcid.org/0000-0002-5206-2954</orcidid></search><sort><creationdate>202004</creationdate><title>Vehicular-OBUs-As-On-Demand-Fogs: Resource and Context Aware Deployment of Containerized Micro-Services</title><author>Sami, Hani ; Mourad, Azzam ; El-Hajj, Wassim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-aed5ba217b35535758cf316c2e4eeee8922e899e24026e74a651253526a787063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automobiles</topic><topic>Availability</topic><topic>Cloud computing</topic><topic>Clustering</topic><topic>Computer architecture</topic><topic>Computer simulation</topic><topic>container</topic><topic>Containers</topic><topic>Context</topic><topic>Delays</topic><topic>Demand</topic><topic>Docker</topic><topic>Driver behavior</topic><topic>Evolutionary algorithms</topic><topic>Fog</topic><topic>Industrial development</topic><topic>Kubeadm</topic><topic>memetic algorithm</topic><topic>micro-services</topic><topic>Multilayers</topic><topic>on-demand fog placement</topic><topic>orchestration</topic><topic>Performance evaluation</topic><topic>Placement</topic><topic>Task analysis</topic><topic>Upgrading</topic><topic>Vehicles</topic><topic>vehicular clustering</topic><topic>vehicular edge computing</topic><topic>vehicular fog computing</topic><topic>Vehicular on-boarding units (OBUs)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sami, Hani</creatorcontrib><creatorcontrib>Mourad, Azzam</creatorcontrib><creatorcontrib>El-Hajj, Wassim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sami, Hani</au><au>Mourad, Azzam</au><au>El-Hajj, Wassim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vehicular-OBUs-As-On-Demand-Fogs: Resource and Context Aware Deployment of Containerized Micro-Services</atitle><jtitle>IEEE/ACM transactions on networking</jtitle><stitle>TNET</stitle><date>2020-04</date><risdate>2020</risdate><volume>28</volume><issue>2</issue><spage>778</spage><epage>790</epage><pages>778-790</pages><issn>1063-6692</issn><eissn>1558-2566</eissn><coden>IEANEP</coden><abstract>Observing the headway in vehicular industry, new applications are developed demanding more resources. For instance, real-time vehicular applications require fast processing of the vast amount of generated data by vehicles in order to maintain service availability and reachability while driving. Fog devices are capable of bringing cloud intelligence near the edge, making them a suitable candidate to process vehicular requests. However, their location, processing power, and technology used to host and update services affect their availability and performance while considering the mobility patterns of vehicles. In this paper, we overcome the aforementioned limitations by taking advantage of the evolvement of On-Board Units, Kubeadm Clustering, Docker Containerization, and micro-services technologies. In this context, we propose an efficient resource and context aware approach for deploying containerized micro-services on on-demand fogs called Vehicular-OBUs-As-On-Demand-Fogs. Our proposed scheme embeds (1) a Kubeadm based approach for clustering OBUs and enabling on-demand micro-services deployment with the least costs and time using Docker containerization technology, (2) a hybrid multi-layered networking architecture to maintain reachability between the requesting user and available vehicular fog cluster, and (3) a vehicular multi-objective container placement model for producing efficient vehicles selection and services distribution. An Evolutionary Memetic Algorithm is elaborated to solve our vehicular container placement problem. Experiments and simulations demonstrate the relevance and efficiency of our approach compared to other recent techniques in the literature.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNET.2020.2973800</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6925-1006</orcidid><orcidid>https://orcid.org/0000-0001-9434-5322</orcidid><orcidid>https://orcid.org/0000-0002-5206-2954</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6692 |
ispartof | IEEE/ACM transactions on networking, 2020-04, Vol.28 (2), p.778-790 |
issn | 1063-6692 1558-2566 |
language | eng |
recordid | cdi_proquest_journals_2391266175 |
source | IEEE Electronic Library (IEL) |
subjects | Automobiles Availability Cloud computing Clustering Computer architecture Computer simulation container Containers Context Delays Demand Docker Driver behavior Evolutionary algorithms Fog Industrial development Kubeadm memetic algorithm micro-services Multilayers on-demand fog placement orchestration Performance evaluation Placement Task analysis Upgrading Vehicles vehicular clustering vehicular edge computing vehicular fog computing Vehicular on-boarding units (OBUs) |
title | Vehicular-OBUs-As-On-Demand-Fogs: Resource and Context Aware Deployment of Containerized Micro-Services |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A58%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vehicular-OBUs-As-On-Demand-Fogs:%20Resource%20and%20Context%20Aware%20Deployment%20of%20Containerized%20Micro-Services&rft.jtitle=IEEE/ACM%20transactions%20on%20networking&rft.au=Sami,%20Hani&rft.date=2020-04&rft.volume=28&rft.issue=2&rft.spage=778&rft.epage=790&rft.pages=778-790&rft.issn=1063-6692&rft.eissn=1558-2566&rft.coden=IEANEP&rft_id=info:doi/10.1109/TNET.2020.2973800&rft_dat=%3Cproquest_RIE%3E2391266175%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2391266175&rft_id=info:pmid/&rft_ieee_id=9032323&rfr_iscdi=true |