Vehicular-OBUs-As-On-Demand-Fogs: Resource and Context Aware Deployment of Containerized Micro-Services

Observing the headway in vehicular industry, new applications are developed demanding more resources. For instance, real-time vehicular applications require fast processing of the vast amount of generated data by vehicles in order to maintain service availability and reachability while driving. Fog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on networking 2020-04, Vol.28 (2), p.778-790
Hauptverfasser: Sami, Hani, Mourad, Azzam, El-Hajj, Wassim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 790
container_issue 2
container_start_page 778
container_title IEEE/ACM transactions on networking
container_volume 28
creator Sami, Hani
Mourad, Azzam
El-Hajj, Wassim
description Observing the headway in vehicular industry, new applications are developed demanding more resources. For instance, real-time vehicular applications require fast processing of the vast amount of generated data by vehicles in order to maintain service availability and reachability while driving. Fog devices are capable of bringing cloud intelligence near the edge, making them a suitable candidate to process vehicular requests. However, their location, processing power, and technology used to host and update services affect their availability and performance while considering the mobility patterns of vehicles. In this paper, we overcome the aforementioned limitations by taking advantage of the evolvement of On-Board Units, Kubeadm Clustering, Docker Containerization, and micro-services technologies. In this context, we propose an efficient resource and context aware approach for deploying containerized micro-services on on-demand fogs called Vehicular-OBUs-As-On-Demand-Fogs. Our proposed scheme embeds (1) a Kubeadm based approach for clustering OBUs and enabling on-demand micro-services deployment with the least costs and time using Docker containerization technology, (2) a hybrid multi-layered networking architecture to maintain reachability between the requesting user and available vehicular fog cluster, and (3) a vehicular multi-objective container placement model for producing efficient vehicles selection and services distribution. An Evolutionary Memetic Algorithm is elaborated to solve our vehicular container placement problem. Experiments and simulations demonstrate the relevance and efficiency of our approach compared to other recent techniques in the literature.
doi_str_mv 10.1109/TNET.2020.2973800
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2391266175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9032323</ieee_id><sourcerecordid>2391266175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-aed5ba217b35535758cf316c2e4eeee8922e899e24026e74a651253526a787063</originalsourceid><addsrcrecordid>eNo9kN1OAjEQhRujiYg-gPGmidfFdkq7W--QHzVBSRS8bcoyi0tgF9tFxae3CLGTtJP2m86ZQ8il4C0huLkZP_fHLeDAW2ASmXJ-RBpCqZSB0vo45lxLprWBU3IWwoJzITnoBpm_4XuRbZbOs9HdJLBOYKOS9XDlyhkbVPNwS18wVBufIY1XtFuVNX7XtPPlPNIerpfVdoVlTav8780VJfriB2f0qch8xV7RfxYZhnNykrtlwIvD2SSTQX_cfWDD0f1jtzNkGRhZM4czNXUgkqlUSqpEpVkuhc4A2xhXagDiZhDaUT0mbaeVgAiCdkmaxBmb5Hr_79pXHxsMtV1E8WVsaUEaAVqLREVK7KkoMQSPuV37YuX81gpud37anZ9256c9-BlrrvY1RRTyzxsuIYb8BT_jcCc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391266175</pqid></control><display><type>article</type><title>Vehicular-OBUs-As-On-Demand-Fogs: Resource and Context Aware Deployment of Containerized Micro-Services</title><source>IEEE Electronic Library (IEL)</source><creator>Sami, Hani ; Mourad, Azzam ; El-Hajj, Wassim</creator><creatorcontrib>Sami, Hani ; Mourad, Azzam ; El-Hajj, Wassim</creatorcontrib><description>Observing the headway in vehicular industry, new applications are developed demanding more resources. For instance, real-time vehicular applications require fast processing of the vast amount of generated data by vehicles in order to maintain service availability and reachability while driving. Fog devices are capable of bringing cloud intelligence near the edge, making them a suitable candidate to process vehicular requests. However, their location, processing power, and technology used to host and update services affect their availability and performance while considering the mobility patterns of vehicles. In this paper, we overcome the aforementioned limitations by taking advantage of the evolvement of On-Board Units, Kubeadm Clustering, Docker Containerization, and micro-services technologies. In this context, we propose an efficient resource and context aware approach for deploying containerized micro-services on on-demand fogs called Vehicular-OBUs-As-On-Demand-Fogs. Our proposed scheme embeds (1) a Kubeadm based approach for clustering OBUs and enabling on-demand micro-services deployment with the least costs and time using Docker containerization technology, (2) a hybrid multi-layered networking architecture to maintain reachability between the requesting user and available vehicular fog cluster, and (3) a vehicular multi-objective container placement model for producing efficient vehicles selection and services distribution. An Evolutionary Memetic Algorithm is elaborated to solve our vehicular container placement problem. Experiments and simulations demonstrate the relevance and efficiency of our approach compared to other recent techniques in the literature.</description><identifier>ISSN: 1063-6692</identifier><identifier>EISSN: 1558-2566</identifier><identifier>DOI: 10.1109/TNET.2020.2973800</identifier><identifier>CODEN: IEANEP</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automobiles ; Availability ; Cloud computing ; Clustering ; Computer architecture ; Computer simulation ; container ; Containers ; Context ; Delays ; Demand ; Docker ; Driver behavior ; Evolutionary algorithms ; Fog ; Industrial development ; Kubeadm ; memetic algorithm ; micro-services ; Multilayers ; on-demand fog placement ; orchestration ; Performance evaluation ; Placement ; Task analysis ; Upgrading ; Vehicles ; vehicular clustering ; vehicular edge computing ; vehicular fog computing ; Vehicular on-boarding units (OBUs)</subject><ispartof>IEEE/ACM transactions on networking, 2020-04, Vol.28 (2), p.778-790</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-aed5ba217b35535758cf316c2e4eeee8922e899e24026e74a651253526a787063</citedby><cites>FETCH-LOGICAL-c293t-aed5ba217b35535758cf316c2e4eeee8922e899e24026e74a651253526a787063</cites><orcidid>0000-0002-6925-1006 ; 0000-0001-9434-5322 ; 0000-0002-5206-2954</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9032323$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9032323$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sami, Hani</creatorcontrib><creatorcontrib>Mourad, Azzam</creatorcontrib><creatorcontrib>El-Hajj, Wassim</creatorcontrib><title>Vehicular-OBUs-As-On-Demand-Fogs: Resource and Context Aware Deployment of Containerized Micro-Services</title><title>IEEE/ACM transactions on networking</title><addtitle>TNET</addtitle><description>Observing the headway in vehicular industry, new applications are developed demanding more resources. For instance, real-time vehicular applications require fast processing of the vast amount of generated data by vehicles in order to maintain service availability and reachability while driving. Fog devices are capable of bringing cloud intelligence near the edge, making them a suitable candidate to process vehicular requests. However, their location, processing power, and technology used to host and update services affect their availability and performance while considering the mobility patterns of vehicles. In this paper, we overcome the aforementioned limitations by taking advantage of the evolvement of On-Board Units, Kubeadm Clustering, Docker Containerization, and micro-services technologies. In this context, we propose an efficient resource and context aware approach for deploying containerized micro-services on on-demand fogs called Vehicular-OBUs-As-On-Demand-Fogs. Our proposed scheme embeds (1) a Kubeadm based approach for clustering OBUs and enabling on-demand micro-services deployment with the least costs and time using Docker containerization technology, (2) a hybrid multi-layered networking architecture to maintain reachability between the requesting user and available vehicular fog cluster, and (3) a vehicular multi-objective container placement model for producing efficient vehicles selection and services distribution. An Evolutionary Memetic Algorithm is elaborated to solve our vehicular container placement problem. Experiments and simulations demonstrate the relevance and efficiency of our approach compared to other recent techniques in the literature.</description><subject>Automobiles</subject><subject>Availability</subject><subject>Cloud computing</subject><subject>Clustering</subject><subject>Computer architecture</subject><subject>Computer simulation</subject><subject>container</subject><subject>Containers</subject><subject>Context</subject><subject>Delays</subject><subject>Demand</subject><subject>Docker</subject><subject>Driver behavior</subject><subject>Evolutionary algorithms</subject><subject>Fog</subject><subject>Industrial development</subject><subject>Kubeadm</subject><subject>memetic algorithm</subject><subject>micro-services</subject><subject>Multilayers</subject><subject>on-demand fog placement</subject><subject>orchestration</subject><subject>Performance evaluation</subject><subject>Placement</subject><subject>Task analysis</subject><subject>Upgrading</subject><subject>Vehicles</subject><subject>vehicular clustering</subject><subject>vehicular edge computing</subject><subject>vehicular fog computing</subject><subject>Vehicular on-boarding units (OBUs)</subject><issn>1063-6692</issn><issn>1558-2566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1OAjEQhRujiYg-gPGmidfFdkq7W--QHzVBSRS8bcoyi0tgF9tFxae3CLGTtJP2m86ZQ8il4C0huLkZP_fHLeDAW2ASmXJ-RBpCqZSB0vo45lxLprWBU3IWwoJzITnoBpm_4XuRbZbOs9HdJLBOYKOS9XDlyhkbVPNwS18wVBufIY1XtFuVNX7XtPPlPNIerpfVdoVlTav8780VJfriB2f0qch8xV7RfxYZhnNykrtlwIvD2SSTQX_cfWDD0f1jtzNkGRhZM4czNXUgkqlUSqpEpVkuhc4A2xhXagDiZhDaUT0mbaeVgAiCdkmaxBmb5Hr_79pXHxsMtV1E8WVsaUEaAVqLREVK7KkoMQSPuV37YuX81gpud37anZ9256c9-BlrrvY1RRTyzxsuIYb8BT_jcCc</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Sami, Hani</creator><creator>Mourad, Azzam</creator><creator>El-Hajj, Wassim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6925-1006</orcidid><orcidid>https://orcid.org/0000-0001-9434-5322</orcidid><orcidid>https://orcid.org/0000-0002-5206-2954</orcidid></search><sort><creationdate>202004</creationdate><title>Vehicular-OBUs-As-On-Demand-Fogs: Resource and Context Aware Deployment of Containerized Micro-Services</title><author>Sami, Hani ; Mourad, Azzam ; El-Hajj, Wassim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-aed5ba217b35535758cf316c2e4eeee8922e899e24026e74a651253526a787063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automobiles</topic><topic>Availability</topic><topic>Cloud computing</topic><topic>Clustering</topic><topic>Computer architecture</topic><topic>Computer simulation</topic><topic>container</topic><topic>Containers</topic><topic>Context</topic><topic>Delays</topic><topic>Demand</topic><topic>Docker</topic><topic>Driver behavior</topic><topic>Evolutionary algorithms</topic><topic>Fog</topic><topic>Industrial development</topic><topic>Kubeadm</topic><topic>memetic algorithm</topic><topic>micro-services</topic><topic>Multilayers</topic><topic>on-demand fog placement</topic><topic>orchestration</topic><topic>Performance evaluation</topic><topic>Placement</topic><topic>Task analysis</topic><topic>Upgrading</topic><topic>Vehicles</topic><topic>vehicular clustering</topic><topic>vehicular edge computing</topic><topic>vehicular fog computing</topic><topic>Vehicular on-boarding units (OBUs)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sami, Hani</creatorcontrib><creatorcontrib>Mourad, Azzam</creatorcontrib><creatorcontrib>El-Hajj, Wassim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sami, Hani</au><au>Mourad, Azzam</au><au>El-Hajj, Wassim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vehicular-OBUs-As-On-Demand-Fogs: Resource and Context Aware Deployment of Containerized Micro-Services</atitle><jtitle>IEEE/ACM transactions on networking</jtitle><stitle>TNET</stitle><date>2020-04</date><risdate>2020</risdate><volume>28</volume><issue>2</issue><spage>778</spage><epage>790</epage><pages>778-790</pages><issn>1063-6692</issn><eissn>1558-2566</eissn><coden>IEANEP</coden><abstract>Observing the headway in vehicular industry, new applications are developed demanding more resources. For instance, real-time vehicular applications require fast processing of the vast amount of generated data by vehicles in order to maintain service availability and reachability while driving. Fog devices are capable of bringing cloud intelligence near the edge, making them a suitable candidate to process vehicular requests. However, their location, processing power, and technology used to host and update services affect their availability and performance while considering the mobility patterns of vehicles. In this paper, we overcome the aforementioned limitations by taking advantage of the evolvement of On-Board Units, Kubeadm Clustering, Docker Containerization, and micro-services technologies. In this context, we propose an efficient resource and context aware approach for deploying containerized micro-services on on-demand fogs called Vehicular-OBUs-As-On-Demand-Fogs. Our proposed scheme embeds (1) a Kubeadm based approach for clustering OBUs and enabling on-demand micro-services deployment with the least costs and time using Docker containerization technology, (2) a hybrid multi-layered networking architecture to maintain reachability between the requesting user and available vehicular fog cluster, and (3) a vehicular multi-objective container placement model for producing efficient vehicles selection and services distribution. An Evolutionary Memetic Algorithm is elaborated to solve our vehicular container placement problem. Experiments and simulations demonstrate the relevance and efficiency of our approach compared to other recent techniques in the literature.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNET.2020.2973800</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6925-1006</orcidid><orcidid>https://orcid.org/0000-0001-9434-5322</orcidid><orcidid>https://orcid.org/0000-0002-5206-2954</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6692
ispartof IEEE/ACM transactions on networking, 2020-04, Vol.28 (2), p.778-790
issn 1063-6692
1558-2566
language eng
recordid cdi_proquest_journals_2391266175
source IEEE Electronic Library (IEL)
subjects Automobiles
Availability
Cloud computing
Clustering
Computer architecture
Computer simulation
container
Containers
Context
Delays
Demand
Docker
Driver behavior
Evolutionary algorithms
Fog
Industrial development
Kubeadm
memetic algorithm
micro-services
Multilayers
on-demand fog placement
orchestration
Performance evaluation
Placement
Task analysis
Upgrading
Vehicles
vehicular clustering
vehicular edge computing
vehicular fog computing
Vehicular on-boarding units (OBUs)
title Vehicular-OBUs-As-On-Demand-Fogs: Resource and Context Aware Deployment of Containerized Micro-Services
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A58%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vehicular-OBUs-As-On-Demand-Fogs:%20Resource%20and%20Context%20Aware%20Deployment%20of%20Containerized%20Micro-Services&rft.jtitle=IEEE/ACM%20transactions%20on%20networking&rft.au=Sami,%20Hani&rft.date=2020-04&rft.volume=28&rft.issue=2&rft.spage=778&rft.epage=790&rft.pages=778-790&rft.issn=1063-6692&rft.eissn=1558-2566&rft.coden=IEANEP&rft_id=info:doi/10.1109/TNET.2020.2973800&rft_dat=%3Cproquest_RIE%3E2391266175%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2391266175&rft_id=info:pmid/&rft_ieee_id=9032323&rfr_iscdi=true