Leveraging Fog Computing for Sustainable Smart Farming Using Distributed Simulation
The concept of smart farming has led to the use of technology to enhance agricultural productivity. With access to low-cost sensors and management systems, more farmers are adopting this technology to achieve sustainable growth. However, in literature, there are no simulation platforms to help resea...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2020-04, Vol.7 (4), p.3300-3309 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3309 |
---|---|
container_issue | 4 |
container_start_page | 3300 |
container_title | IEEE internet of things journal |
container_volume | 7 |
creator | Malik, Asad Waqar Rahman, Anis Ur Qayyum, Tariq Ravana, Sri Devi |
description | The concept of smart farming has led to the use of technology to enhance agricultural productivity. With access to low-cost sensors and management systems, more farmers are adopting this technology to achieve sustainable growth. However, in literature, there are no simulation platforms to help researchers and users understand sensor deployment, and data collection and processing. In this article, we propose a framework designed to provide a complete farming ecosystem. The toolkit facilitates users to simulate custom farming scenarios, specifically to identify sensor placement, coverage area, line-of-sight deployment, and data gathering through the relay mechanism or airborne systems, mobility models for mobile nodes, energy models for on-ground sensors and airborne vehicles, and backend computing support using the fog computing paradigm. Furthermore, in most of the existing works, network parameters are ignored, which can impact the overall performance of any deployed system. Therefore, the proposed framework also provides a benchmark in terms of transmission delay, packet delivery ratio, energy consumption, and system resources usage. |
doi_str_mv | 10.1109/JIOT.2020.2967405 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2391262534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8962317</ieee_id><sourcerecordid>2391262534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-d442fc6a0110a70bc98c558b47f6eb5caa4b04eb903e5633f8ba0a51c846f21e3</originalsourceid><addsrcrecordid>eNpNkMtKAzEUhoMoWLQPIG4GXE_NfSZLqVYrhS6mXYdkmpSUzqQmGcG3d0KLuDkXzv-fk3wAPCA4QwiK58_lejPDEMMZFryikF2BCSa4Kinn-PpffQumMR4ghKONIcEnoFmZbxPU3vX7YuH3xdx3pyHlzvpQNENMyvVKH03RdCqkYqFCl6fbmOOriyk4PSSzKxrXDUeVnO_vwY1Vx2iml3wHtou3zfyjXK3fl_OXVdliQVK5oxTblqv8GFVB3Yq6ZazWtLLcaNYqRTWkRgtIDOOE2ForqBhqa8otRobcgafz3lPwX4OJSR78EPrxpMREIMwxI3RUobOqDT7GYKw8BTf-5UciKDM-mfHJjE9e8I2ex7PHGWP-9LXgmKCK_ALYGWup</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391262534</pqid></control><display><type>article</type><title>Leveraging Fog Computing for Sustainable Smart Farming Using Distributed Simulation</title><source>IEEE Electronic Library (IEL)</source><creator>Malik, Asad Waqar ; Rahman, Anis Ur ; Qayyum, Tariq ; Ravana, Sri Devi</creator><creatorcontrib>Malik, Asad Waqar ; Rahman, Anis Ur ; Qayyum, Tariq ; Ravana, Sri Devi</creatorcontrib><description>The concept of smart farming has led to the use of technology to enhance agricultural productivity. With access to low-cost sensors and management systems, more farmers are adopting this technology to achieve sustainable growth. However, in literature, there are no simulation platforms to help researchers and users understand sensor deployment, and data collection and processing. In this article, we propose a framework designed to provide a complete farming ecosystem. The toolkit facilitates users to simulate custom farming scenarios, specifically to identify sensor placement, coverage area, line-of-sight deployment, and data gathering through the relay mechanism or airborne systems, mobility models for mobile nodes, energy models for on-ground sensors and airborne vehicles, and backend computing support using the fog computing paradigm. Furthermore, in most of the existing works, network parameters are ignored, which can impact the overall performance of any deployed system. Therefore, the proposed framework also provides a benchmark in terms of transmission delay, packet delivery ratio, energy consumption, and system resources usage.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2020.2967405</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Agricultural management ; Airborne sensing ; Cloud computing ; Computational modeling ; Computer simulation ; Data collection ; Data-driven simulation ; Energy consumption ; Farming ; fog computing ; Intelligent sensors ; Internet of flying fogs ; Internet of Things ; Management systems ; mobility models ; Monitoring ; Sensors ; smart farming</subject><ispartof>IEEE internet of things journal, 2020-04, Vol.7 (4), p.3300-3309</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-d442fc6a0110a70bc98c558b47f6eb5caa4b04eb903e5633f8ba0a51c846f21e3</citedby><cites>FETCH-LOGICAL-c293t-d442fc6a0110a70bc98c558b47f6eb5caa4b04eb903e5633f8ba0a51c846f21e3</cites><orcidid>0000-0002-5637-9158 ; 0000-0003-3561-9674 ; 0000-0002-8306-475X ; 0000-0003-3804-997X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8962317$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8962317$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Malik, Asad Waqar</creatorcontrib><creatorcontrib>Rahman, Anis Ur</creatorcontrib><creatorcontrib>Qayyum, Tariq</creatorcontrib><creatorcontrib>Ravana, Sri Devi</creatorcontrib><title>Leveraging Fog Computing for Sustainable Smart Farming Using Distributed Simulation</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>The concept of smart farming has led to the use of technology to enhance agricultural productivity. With access to low-cost sensors and management systems, more farmers are adopting this technology to achieve sustainable growth. However, in literature, there are no simulation platforms to help researchers and users understand sensor deployment, and data collection and processing. In this article, we propose a framework designed to provide a complete farming ecosystem. The toolkit facilitates users to simulate custom farming scenarios, specifically to identify sensor placement, coverage area, line-of-sight deployment, and data gathering through the relay mechanism or airborne systems, mobility models for mobile nodes, energy models for on-ground sensors and airborne vehicles, and backend computing support using the fog computing paradigm. Furthermore, in most of the existing works, network parameters are ignored, which can impact the overall performance of any deployed system. Therefore, the proposed framework also provides a benchmark in terms of transmission delay, packet delivery ratio, energy consumption, and system resources usage.</description><subject>Agricultural management</subject><subject>Airborne sensing</subject><subject>Cloud computing</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Data collection</subject><subject>Data-driven simulation</subject><subject>Energy consumption</subject><subject>Farming</subject><subject>fog computing</subject><subject>Intelligent sensors</subject><subject>Internet of flying fogs</subject><subject>Internet of Things</subject><subject>Management systems</subject><subject>mobility models</subject><subject>Monitoring</subject><subject>Sensors</subject><subject>smart farming</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtKAzEUhoMoWLQPIG4GXE_NfSZLqVYrhS6mXYdkmpSUzqQmGcG3d0KLuDkXzv-fk3wAPCA4QwiK58_lejPDEMMZFryikF2BCSa4Kinn-PpffQumMR4ghKONIcEnoFmZbxPU3vX7YuH3xdx3pyHlzvpQNENMyvVKH03RdCqkYqFCl6fbmOOriyk4PSSzKxrXDUeVnO_vwY1Vx2iml3wHtou3zfyjXK3fl_OXVdliQVK5oxTblqv8GFVB3Yq6ZazWtLLcaNYqRTWkRgtIDOOE2ForqBhqa8otRobcgafz3lPwX4OJSR78EPrxpMREIMwxI3RUobOqDT7GYKw8BTf-5UciKDM-mfHJjE9e8I2ex7PHGWP-9LXgmKCK_ALYGWup</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Malik, Asad Waqar</creator><creator>Rahman, Anis Ur</creator><creator>Qayyum, Tariq</creator><creator>Ravana, Sri Devi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5637-9158</orcidid><orcidid>https://orcid.org/0000-0003-3561-9674</orcidid><orcidid>https://orcid.org/0000-0002-8306-475X</orcidid><orcidid>https://orcid.org/0000-0003-3804-997X</orcidid></search><sort><creationdate>20200401</creationdate><title>Leveraging Fog Computing for Sustainable Smart Farming Using Distributed Simulation</title><author>Malik, Asad Waqar ; Rahman, Anis Ur ; Qayyum, Tariq ; Ravana, Sri Devi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-d442fc6a0110a70bc98c558b47f6eb5caa4b04eb903e5633f8ba0a51c846f21e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agricultural management</topic><topic>Airborne sensing</topic><topic>Cloud computing</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Data collection</topic><topic>Data-driven simulation</topic><topic>Energy consumption</topic><topic>Farming</topic><topic>fog computing</topic><topic>Intelligent sensors</topic><topic>Internet of flying fogs</topic><topic>Internet of Things</topic><topic>Management systems</topic><topic>mobility models</topic><topic>Monitoring</topic><topic>Sensors</topic><topic>smart farming</topic><toplevel>online_resources</toplevel><creatorcontrib>Malik, Asad Waqar</creatorcontrib><creatorcontrib>Rahman, Anis Ur</creatorcontrib><creatorcontrib>Qayyum, Tariq</creatorcontrib><creatorcontrib>Ravana, Sri Devi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Malik, Asad Waqar</au><au>Rahman, Anis Ur</au><au>Qayyum, Tariq</au><au>Ravana, Sri Devi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leveraging Fog Computing for Sustainable Smart Farming Using Distributed Simulation</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>7</volume><issue>4</issue><spage>3300</spage><epage>3309</epage><pages>3300-3309</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>The concept of smart farming has led to the use of technology to enhance agricultural productivity. With access to low-cost sensors and management systems, more farmers are adopting this technology to achieve sustainable growth. However, in literature, there are no simulation platforms to help researchers and users understand sensor deployment, and data collection and processing. In this article, we propose a framework designed to provide a complete farming ecosystem. The toolkit facilitates users to simulate custom farming scenarios, specifically to identify sensor placement, coverage area, line-of-sight deployment, and data gathering through the relay mechanism or airborne systems, mobility models for mobile nodes, energy models for on-ground sensors and airborne vehicles, and backend computing support using the fog computing paradigm. Furthermore, in most of the existing works, network parameters are ignored, which can impact the overall performance of any deployed system. Therefore, the proposed framework also provides a benchmark in terms of transmission delay, packet delivery ratio, energy consumption, and system resources usage.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2020.2967405</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5637-9158</orcidid><orcidid>https://orcid.org/0000-0003-3561-9674</orcidid><orcidid>https://orcid.org/0000-0002-8306-475X</orcidid><orcidid>https://orcid.org/0000-0003-3804-997X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2020-04, Vol.7 (4), p.3300-3309 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_proquest_journals_2391262534 |
source | IEEE Electronic Library (IEL) |
subjects | Agricultural management Airborne sensing Cloud computing Computational modeling Computer simulation Data collection Data-driven simulation Energy consumption Farming fog computing Intelligent sensors Internet of flying fogs Internet of Things Management systems mobility models Monitoring Sensors smart farming |
title | Leveraging Fog Computing for Sustainable Smart Farming Using Distributed Simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A20%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leveraging%20Fog%20Computing%20for%20Sustainable%20Smart%20Farming%20Using%20Distributed%20Simulation&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Malik,%20Asad%20Waqar&rft.date=2020-04-01&rft.volume=7&rft.issue=4&rft.spage=3300&rft.epage=3309&rft.pages=3300-3309&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2020.2967405&rft_dat=%3Cproquest_RIE%3E2391262534%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2391262534&rft_id=info:pmid/&rft_ieee_id=8962317&rfr_iscdi=true |