Space-Borne GNSS-R Signal Over a Complex Topography: Modeling and Validation

A significant quantity of space-borne Global Navigation Satellite Systems-Reflectometry (GNSS-R) data over land was made available in the last decade, leading to an increasing interest in the assessment of the potentialities of this new remote sensing technique for land monitoring. In this frame, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2020, Vol.13, p.1218-1233
Hauptverfasser: Dente, Laura, Guerriero, Leila, Comite, Davide, Pierdicca, Nazzareno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1233
container_issue
container_start_page 1218
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 13
creator Dente, Laura
Guerriero, Leila
Comite, Davide
Pierdicca, Nazzareno
description A significant quantity of space-borne Global Navigation Satellite Systems-Reflectometry (GNSS-R) data over land was made available in the last decade, leading to an increasing interest in the assessment of the potentialities of this new remote sensing technique for land monitoring. In this frame, an electromagnetic simulator, such as the Soil And VEgetation Reflection Simulator (SAVERS), has the key role to support the understanding of the physical mechanism involved in the bistatic scattering and to identify the surface features mainly contributing to the observed signal. Originally developed for ground and airborne GNSS-R observations over homogeneous areas, in this study, SAVERS was upgraded to account for space-borne systems. The new version of SAVERS takes into account the inhomogeneity characterizing the large area observed from space altitudes, due to a variable surface elevation and land cover. Coherent and incoherent scattering and polarization rotation are computed taking into account the local slope and elevation of the surface. The simulator was validated against TechDemoSat-1 observations over a bare surface with a complex topography and over a forested surface with a gentle topography. The validation results show the capability of SAVERS to correctly estimate the effect of the topography, enhancing the understanding of the observations. Moreover, it was found that the sensitivity to soil moisture is independent of the topography (about 1.5 dB for a 10% variation of soil moisture). Whereas a saturation of the GNSS-R reflectivity over a variable topography is reached for lower values of biomass, earlier than in the flat case.
doi_str_mv 10.1109/JSTARS.2020.2975187
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2391257681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9037063</ieee_id><doaj_id>oai_doaj_org_article_03ad9e940cbc4d63b32c8eb91868cc21</doaj_id><sourcerecordid>2391257681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-f80157bc69e9693661e6cf7f4b171eb10e983cf417acc63e81c67453688de6e13</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxSMEEkvhE_QSiSPKMmMn_sOtRFCKFio1C1fLcSaLV2kcnCzQb0_SVOXKaazR-72n8UuSc4QtIui3n6v9xU21ZcBgy7QsUMknyYZhgRkWvHiabFBznWEO-fPkxTgeAQSTmm-SXTVYR9n7EHtKL79WVXaTVv7Q2y69_kUxtWkZboeO_qT7MIRDtMOPu3fpl9BQ5_tDavsm_W4739jJh_5l8qy13UivHuZZ8u3jh335KdtdX16VF7vM5aCmrFWAhayd0KSF5kIgCdfKNq9RItUIpBV3bY7SOic4KXRC5gUXSjUkCPlZcrX6NsEezRD9rY13Jlhv7hchHoyNk3cdGeC2mWNycLXLG8FrzpyiWqMSyjm2eL1evYYYfp5onMwxnOJ8_2gY18gKKdSi4qvKxTCOkdrHVASzVGDWCsxSgXmoYKberNRvqkM7Ok-9o0cSAAqmNM_5_IIlQ_2_uvTT_ZeX4dRPM3q-op7oH6KBSxCc_wWFtKET</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391257681</pqid></control><display><type>article</type><title>Space-Borne GNSS-R Signal Over a Complex Topography: Modeling and Validation</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Dente, Laura ; Guerriero, Leila ; Comite, Davide ; Pierdicca, Nazzareno</creator><creatorcontrib>Dente, Laura ; Guerriero, Leila ; Comite, Davide ; Pierdicca, Nazzareno</creatorcontrib><description>A significant quantity of space-borne Global Navigation Satellite Systems-Reflectometry (GNSS-R) data over land was made available in the last decade, leading to an increasing interest in the assessment of the potentialities of this new remote sensing technique for land monitoring. In this frame, an electromagnetic simulator, such as the Soil And VEgetation Reflection Simulator (SAVERS), has the key role to support the understanding of the physical mechanism involved in the bistatic scattering and to identify the surface features mainly contributing to the observed signal. Originally developed for ground and airborne GNSS-R observations over homogeneous areas, in this study, SAVERS was upgraded to account for space-borne systems. The new version of SAVERS takes into account the inhomogeneity characterizing the large area observed from space altitudes, due to a variable surface elevation and land cover. Coherent and incoherent scattering and polarization rotation are computed taking into account the local slope and elevation of the surface. The simulator was validated against TechDemoSat-1 observations over a bare surface with a complex topography and over a forested surface with a gentle topography. The validation results show the capability of SAVERS to correctly estimate the effect of the topography, enhancing the understanding of the observations. Moreover, it was found that the sensitivity to soil moisture is independent of the topography (about 1.5 dB for a 10% variation of soil moisture). Whereas a saturation of the GNSS-R reflectivity over a variable topography is reached for lower values of biomass, earlier than in the flat case.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2020.2975187</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Airborne observation ; Coherent scattering ; Computer simulation ; Elevation ; Engineering ; Engineering, Electrical &amp; Electronic ; Geography, Physical ; Global navigation satellite system ; Global Navigation Satellite Systems (GNSS) reflectometry ; Imaging Science &amp; Photographic Technology ; Incoherent scattering ; Inhomogeneity ; land applications ; Land cover ; Mathematical model ; Navigation ; Navigation satellites ; Navigational satellites ; Object oriented modeling ; Physical Geography ; Physical Sciences ; Receivers ; Reflectance ; Reflectometry ; Remote monitoring ; Remote Sensing ; Satellite observation ; Saturation ; Scattering ; scattering model ; Science &amp; Technology ; Sea surface ; simulator ; Simulators ; Soil ; Soil moisture ; Soils ; Surface topography ; TechDemoSat-1 (TDS-1) ; Technology ; Topography</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.1218-1233</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>35</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000528934300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c408t-f80157bc69e9693661e6cf7f4b171eb10e983cf417acc63e81c67453688de6e13</citedby><cites>FETCH-LOGICAL-c408t-f80157bc69e9693661e6cf7f4b171eb10e983cf417acc63e81c67453688de6e13</cites><orcidid>0000-0002-1232-5377 ; 0000-0002-5080-3966 ; 0000-0002-0812-1048 ; 0000-0003-0087-4667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,2115,4025,27928,27929,27930,28253</link.rule.ids></links><search><creatorcontrib>Dente, Laura</creatorcontrib><creatorcontrib>Guerriero, Leila</creatorcontrib><creatorcontrib>Comite, Davide</creatorcontrib><creatorcontrib>Pierdicca, Nazzareno</creatorcontrib><title>Space-Borne GNSS-R Signal Over a Complex Topography: Modeling and Validation</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><addtitle>IEEE J-STARS</addtitle><description>A significant quantity of space-borne Global Navigation Satellite Systems-Reflectometry (GNSS-R) data over land was made available in the last decade, leading to an increasing interest in the assessment of the potentialities of this new remote sensing technique for land monitoring. In this frame, an electromagnetic simulator, such as the Soil And VEgetation Reflection Simulator (SAVERS), has the key role to support the understanding of the physical mechanism involved in the bistatic scattering and to identify the surface features mainly contributing to the observed signal. Originally developed for ground and airborne GNSS-R observations over homogeneous areas, in this study, SAVERS was upgraded to account for space-borne systems. The new version of SAVERS takes into account the inhomogeneity characterizing the large area observed from space altitudes, due to a variable surface elevation and land cover. Coherent and incoherent scattering and polarization rotation are computed taking into account the local slope and elevation of the surface. The simulator was validated against TechDemoSat-1 observations over a bare surface with a complex topography and over a forested surface with a gentle topography. The validation results show the capability of SAVERS to correctly estimate the effect of the topography, enhancing the understanding of the observations. Moreover, it was found that the sensitivity to soil moisture is independent of the topography (about 1.5 dB for a 10% variation of soil moisture). Whereas a saturation of the GNSS-R reflectivity over a variable topography is reached for lower values of biomass, earlier than in the flat case.</description><subject>Airborne observation</subject><subject>Coherent scattering</subject><subject>Computer simulation</subject><subject>Elevation</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Geography, Physical</subject><subject>Global navigation satellite system</subject><subject>Global Navigation Satellite Systems (GNSS) reflectometry</subject><subject>Imaging Science &amp; Photographic Technology</subject><subject>Incoherent scattering</subject><subject>Inhomogeneity</subject><subject>land applications</subject><subject>Land cover</subject><subject>Mathematical model</subject><subject>Navigation</subject><subject>Navigation satellites</subject><subject>Navigational satellites</subject><subject>Object oriented modeling</subject><subject>Physical Geography</subject><subject>Physical Sciences</subject><subject>Receivers</subject><subject>Reflectance</subject><subject>Reflectometry</subject><subject>Remote monitoring</subject><subject>Remote Sensing</subject><subject>Satellite observation</subject><subject>Saturation</subject><subject>Scattering</subject><subject>scattering model</subject><subject>Science &amp; Technology</subject><subject>Sea surface</subject><subject>simulator</subject><subject>Simulators</subject><subject>Soil</subject><subject>Soil moisture</subject><subject>Soils</subject><subject>Surface topography</subject><subject>TechDemoSat-1 (TDS-1)</subject><subject>Technology</subject><subject>Topography</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU9v1DAQxSMEEkvhE_QSiSPKMmMn_sOtRFCKFio1C1fLcSaLV2kcnCzQb0_SVOXKaazR-72n8UuSc4QtIui3n6v9xU21ZcBgy7QsUMknyYZhgRkWvHiabFBznWEO-fPkxTgeAQSTmm-SXTVYR9n7EHtKL79WVXaTVv7Q2y69_kUxtWkZboeO_qT7MIRDtMOPu3fpl9BQ5_tDavsm_W4739jJh_5l8qy13UivHuZZ8u3jh335KdtdX16VF7vM5aCmrFWAhayd0KSF5kIgCdfKNq9RItUIpBV3bY7SOic4KXRC5gUXSjUkCPlZcrX6NsEezRD9rY13Jlhv7hchHoyNk3cdGeC2mWNycLXLG8FrzpyiWqMSyjm2eL1evYYYfp5onMwxnOJ8_2gY18gKKdSi4qvKxTCOkdrHVASzVGDWCsxSgXmoYKberNRvqkM7Ok-9o0cSAAqmNM_5_IIlQ_2_uvTT_ZeX4dRPM3q-op7oH6KBSxCc_wWFtKET</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Dente, Laura</creator><creator>Guerriero, Leila</creator><creator>Comite, Davide</creator><creator>Pierdicca, Nazzareno</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1232-5377</orcidid><orcidid>https://orcid.org/0000-0002-5080-3966</orcidid><orcidid>https://orcid.org/0000-0002-0812-1048</orcidid><orcidid>https://orcid.org/0000-0003-0087-4667</orcidid></search><sort><creationdate>2020</creationdate><title>Space-Borne GNSS-R Signal Over a Complex Topography: Modeling and Validation</title><author>Dente, Laura ; Guerriero, Leila ; Comite, Davide ; Pierdicca, Nazzareno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-f80157bc69e9693661e6cf7f4b171eb10e983cf417acc63e81c67453688de6e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Airborne observation</topic><topic>Coherent scattering</topic><topic>Computer simulation</topic><topic>Elevation</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Geography, Physical</topic><topic>Global navigation satellite system</topic><topic>Global Navigation Satellite Systems (GNSS) reflectometry</topic><topic>Imaging Science &amp; Photographic Technology</topic><topic>Incoherent scattering</topic><topic>Inhomogeneity</topic><topic>land applications</topic><topic>Land cover</topic><topic>Mathematical model</topic><topic>Navigation</topic><topic>Navigation satellites</topic><topic>Navigational satellites</topic><topic>Object oriented modeling</topic><topic>Physical Geography</topic><topic>Physical Sciences</topic><topic>Receivers</topic><topic>Reflectance</topic><topic>Reflectometry</topic><topic>Remote monitoring</topic><topic>Remote Sensing</topic><topic>Satellite observation</topic><topic>Saturation</topic><topic>Scattering</topic><topic>scattering model</topic><topic>Science &amp; Technology</topic><topic>Sea surface</topic><topic>simulator</topic><topic>Simulators</topic><topic>Soil</topic><topic>Soil moisture</topic><topic>Soils</topic><topic>Surface topography</topic><topic>TechDemoSat-1 (TDS-1)</topic><topic>Technology</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dente, Laura</creatorcontrib><creatorcontrib>Guerriero, Leila</creatorcontrib><creatorcontrib>Comite, Davide</creatorcontrib><creatorcontrib>Pierdicca, Nazzareno</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dente, Laura</au><au>Guerriero, Leila</au><au>Comite, Davide</au><au>Pierdicca, Nazzareno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Space-Borne GNSS-R Signal Over a Complex Topography: Modeling and Validation</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><stitle>IEEE J-STARS</stitle><date>2020</date><risdate>2020</risdate><volume>13</volume><spage>1218</spage><epage>1233</epage><pages>1218-1233</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>A significant quantity of space-borne Global Navigation Satellite Systems-Reflectometry (GNSS-R) data over land was made available in the last decade, leading to an increasing interest in the assessment of the potentialities of this new remote sensing technique for land monitoring. In this frame, an electromagnetic simulator, such as the Soil And VEgetation Reflection Simulator (SAVERS), has the key role to support the understanding of the physical mechanism involved in the bistatic scattering and to identify the surface features mainly contributing to the observed signal. Originally developed for ground and airborne GNSS-R observations over homogeneous areas, in this study, SAVERS was upgraded to account for space-borne systems. The new version of SAVERS takes into account the inhomogeneity characterizing the large area observed from space altitudes, due to a variable surface elevation and land cover. Coherent and incoherent scattering and polarization rotation are computed taking into account the local slope and elevation of the surface. The simulator was validated against TechDemoSat-1 observations over a bare surface with a complex topography and over a forested surface with a gentle topography. The validation results show the capability of SAVERS to correctly estimate the effect of the topography, enhancing the understanding of the observations. Moreover, it was found that the sensitivity to soil moisture is independent of the topography (about 1.5 dB for a 10% variation of soil moisture). Whereas a saturation of the GNSS-R reflectivity over a variable topography is reached for lower values of biomass, earlier than in the flat case.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2020.2975187</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1232-5377</orcidid><orcidid>https://orcid.org/0000-0002-5080-3966</orcidid><orcidid>https://orcid.org/0000-0002-0812-1048</orcidid><orcidid>https://orcid.org/0000-0003-0087-4667</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.1218-1233
issn 1939-1404
2151-1535
language eng
recordid cdi_proquest_journals_2391257681
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Airborne observation
Coherent scattering
Computer simulation
Elevation
Engineering
Engineering, Electrical & Electronic
Geography, Physical
Global navigation satellite system
Global Navigation Satellite Systems (GNSS) reflectometry
Imaging Science & Photographic Technology
Incoherent scattering
Inhomogeneity
land applications
Land cover
Mathematical model
Navigation
Navigation satellites
Navigational satellites
Object oriented modeling
Physical Geography
Physical Sciences
Receivers
Reflectance
Reflectometry
Remote monitoring
Remote Sensing
Satellite observation
Saturation
Scattering
scattering model
Science & Technology
Sea surface
simulator
Simulators
Soil
Soil moisture
Soils
Surface topography
TechDemoSat-1 (TDS-1)
Technology
Topography
title Space-Borne GNSS-R Signal Over a Complex Topography: Modeling and Validation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T15%3A31%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Space-Borne%20GNSS-R%20Signal%20Over%20a%20Complex%20Topography:%20Modeling%20and%20Validation&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Dente,%20Laura&rft.date=2020&rft.volume=13&rft.spage=1218&rft.epage=1233&rft.pages=1218-1233&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2020.2975187&rft_dat=%3Cproquest_webof%3E2391257681%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2391257681&rft_id=info:pmid/&rft_ieee_id=9037063&rft_doaj_id=oai_doaj_org_article_03ad9e940cbc4d63b32c8eb91868cc21&rfr_iscdi=true