Space-Borne GNSS-R Signal Over a Complex Topography: Modeling and Validation
A significant quantity of space-borne Global Navigation Satellite Systems-Reflectometry (GNSS-R) data over land was made available in the last decade, leading to an increasing interest in the assessment of the potentialities of this new remote sensing technique for land monitoring. In this frame, an...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2020, Vol.13, p.1218-1233 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1233 |
---|---|
container_issue | |
container_start_page | 1218 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 13 |
creator | Dente, Laura Guerriero, Leila Comite, Davide Pierdicca, Nazzareno |
description | A significant quantity of space-borne Global Navigation Satellite Systems-Reflectometry (GNSS-R) data over land was made available in the last decade, leading to an increasing interest in the assessment of the potentialities of this new remote sensing technique for land monitoring. In this frame, an electromagnetic simulator, such as the Soil And VEgetation Reflection Simulator (SAVERS), has the key role to support the understanding of the physical mechanism involved in the bistatic scattering and to identify the surface features mainly contributing to the observed signal. Originally developed for ground and airborne GNSS-R observations over homogeneous areas, in this study, SAVERS was upgraded to account for space-borne systems. The new version of SAVERS takes into account the inhomogeneity characterizing the large area observed from space altitudes, due to a variable surface elevation and land cover. Coherent and incoherent scattering and polarization rotation are computed taking into account the local slope and elevation of the surface. The simulator was validated against TechDemoSat-1 observations over a bare surface with a complex topography and over a forested surface with a gentle topography. The validation results show the capability of SAVERS to correctly estimate the effect of the topography, enhancing the understanding of the observations. Moreover, it was found that the sensitivity to soil moisture is independent of the topography (about 1.5 dB for a 10% variation of soil moisture). Whereas a saturation of the GNSS-R reflectivity over a variable topography is reached for lower values of biomass, earlier than in the flat case. |
doi_str_mv | 10.1109/JSTARS.2020.2975187 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2391257681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9037063</ieee_id><doaj_id>oai_doaj_org_article_03ad9e940cbc4d63b32c8eb91868cc21</doaj_id><sourcerecordid>2391257681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-f80157bc69e9693661e6cf7f4b171eb10e983cf417acc63e81c67453688de6e13</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxSMEEkvhE_QSiSPKMmMn_sOtRFCKFio1C1fLcSaLV2kcnCzQb0_SVOXKaazR-72n8UuSc4QtIui3n6v9xU21ZcBgy7QsUMknyYZhgRkWvHiabFBznWEO-fPkxTgeAQSTmm-SXTVYR9n7EHtKL79WVXaTVv7Q2y69_kUxtWkZboeO_qT7MIRDtMOPu3fpl9BQ5_tDavsm_W4739jJh_5l8qy13UivHuZZ8u3jh335KdtdX16VF7vM5aCmrFWAhayd0KSF5kIgCdfKNq9RItUIpBV3bY7SOic4KXRC5gUXSjUkCPlZcrX6NsEezRD9rY13Jlhv7hchHoyNk3cdGeC2mWNycLXLG8FrzpyiWqMSyjm2eL1evYYYfp5onMwxnOJ8_2gY18gKKdSi4qvKxTCOkdrHVASzVGDWCsxSgXmoYKberNRvqkM7Ok-9o0cSAAqmNM_5_IIlQ_2_uvTT_ZeX4dRPM3q-op7oH6KBSxCc_wWFtKET</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391257681</pqid></control><display><type>article</type><title>Space-Borne GNSS-R Signal Over a Complex Topography: Modeling and Validation</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Dente, Laura ; Guerriero, Leila ; Comite, Davide ; Pierdicca, Nazzareno</creator><creatorcontrib>Dente, Laura ; Guerriero, Leila ; Comite, Davide ; Pierdicca, Nazzareno</creatorcontrib><description>A significant quantity of space-borne Global Navigation Satellite Systems-Reflectometry (GNSS-R) data over land was made available in the last decade, leading to an increasing interest in the assessment of the potentialities of this new remote sensing technique for land monitoring. In this frame, an electromagnetic simulator, such as the Soil And VEgetation Reflection Simulator (SAVERS), has the key role to support the understanding of the physical mechanism involved in the bistatic scattering and to identify the surface features mainly contributing to the observed signal. Originally developed for ground and airborne GNSS-R observations over homogeneous areas, in this study, SAVERS was upgraded to account for space-borne systems. The new version of SAVERS takes into account the inhomogeneity characterizing the large area observed from space altitudes, due to a variable surface elevation and land cover. Coherent and incoherent scattering and polarization rotation are computed taking into account the local slope and elevation of the surface. The simulator was validated against TechDemoSat-1 observations over a bare surface with a complex topography and over a forested surface with a gentle topography. The validation results show the capability of SAVERS to correctly estimate the effect of the topography, enhancing the understanding of the observations. Moreover, it was found that the sensitivity to soil moisture is independent of the topography (about 1.5 dB for a 10% variation of soil moisture). Whereas a saturation of the GNSS-R reflectivity over a variable topography is reached for lower values of biomass, earlier than in the flat case.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2020.2975187</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Airborne observation ; Coherent scattering ; Computer simulation ; Elevation ; Engineering ; Engineering, Electrical & Electronic ; Geography, Physical ; Global navigation satellite system ; Global Navigation Satellite Systems (GNSS) reflectometry ; Imaging Science & Photographic Technology ; Incoherent scattering ; Inhomogeneity ; land applications ; Land cover ; Mathematical model ; Navigation ; Navigation satellites ; Navigational satellites ; Object oriented modeling ; Physical Geography ; Physical Sciences ; Receivers ; Reflectance ; Reflectometry ; Remote monitoring ; Remote Sensing ; Satellite observation ; Saturation ; Scattering ; scattering model ; Science & Technology ; Sea surface ; simulator ; Simulators ; Soil ; Soil moisture ; Soils ; Surface topography ; TechDemoSat-1 (TDS-1) ; Technology ; Topography</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.1218-1233</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>35</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000528934300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c408t-f80157bc69e9693661e6cf7f4b171eb10e983cf417acc63e81c67453688de6e13</citedby><cites>FETCH-LOGICAL-c408t-f80157bc69e9693661e6cf7f4b171eb10e983cf417acc63e81c67453688de6e13</cites><orcidid>0000-0002-1232-5377 ; 0000-0002-5080-3966 ; 0000-0002-0812-1048 ; 0000-0003-0087-4667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,2115,4025,27928,27929,27930,28253</link.rule.ids></links><search><creatorcontrib>Dente, Laura</creatorcontrib><creatorcontrib>Guerriero, Leila</creatorcontrib><creatorcontrib>Comite, Davide</creatorcontrib><creatorcontrib>Pierdicca, Nazzareno</creatorcontrib><title>Space-Borne GNSS-R Signal Over a Complex Topography: Modeling and Validation</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><addtitle>IEEE J-STARS</addtitle><description>A significant quantity of space-borne Global Navigation Satellite Systems-Reflectometry (GNSS-R) data over land was made available in the last decade, leading to an increasing interest in the assessment of the potentialities of this new remote sensing technique for land monitoring. In this frame, an electromagnetic simulator, such as the Soil And VEgetation Reflection Simulator (SAVERS), has the key role to support the understanding of the physical mechanism involved in the bistatic scattering and to identify the surface features mainly contributing to the observed signal. Originally developed for ground and airborne GNSS-R observations over homogeneous areas, in this study, SAVERS was upgraded to account for space-borne systems. The new version of SAVERS takes into account the inhomogeneity characterizing the large area observed from space altitudes, due to a variable surface elevation and land cover. Coherent and incoherent scattering and polarization rotation are computed taking into account the local slope and elevation of the surface. The simulator was validated against TechDemoSat-1 observations over a bare surface with a complex topography and over a forested surface with a gentle topography. The validation results show the capability of SAVERS to correctly estimate the effect of the topography, enhancing the understanding of the observations. Moreover, it was found that the sensitivity to soil moisture is independent of the topography (about 1.5 dB for a 10% variation of soil moisture). Whereas a saturation of the GNSS-R reflectivity over a variable topography is reached for lower values of biomass, earlier than in the flat case.</description><subject>Airborne observation</subject><subject>Coherent scattering</subject><subject>Computer simulation</subject><subject>Elevation</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Geography, Physical</subject><subject>Global navigation satellite system</subject><subject>Global Navigation Satellite Systems (GNSS) reflectometry</subject><subject>Imaging Science & Photographic Technology</subject><subject>Incoherent scattering</subject><subject>Inhomogeneity</subject><subject>land applications</subject><subject>Land cover</subject><subject>Mathematical model</subject><subject>Navigation</subject><subject>Navigation satellites</subject><subject>Navigational satellites</subject><subject>Object oriented modeling</subject><subject>Physical Geography</subject><subject>Physical Sciences</subject><subject>Receivers</subject><subject>Reflectance</subject><subject>Reflectometry</subject><subject>Remote monitoring</subject><subject>Remote Sensing</subject><subject>Satellite observation</subject><subject>Saturation</subject><subject>Scattering</subject><subject>scattering model</subject><subject>Science & Technology</subject><subject>Sea surface</subject><subject>simulator</subject><subject>Simulators</subject><subject>Soil</subject><subject>Soil moisture</subject><subject>Soils</subject><subject>Surface topography</subject><subject>TechDemoSat-1 (TDS-1)</subject><subject>Technology</subject><subject>Topography</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU9v1DAQxSMEEkvhE_QSiSPKMmMn_sOtRFCKFio1C1fLcSaLV2kcnCzQb0_SVOXKaazR-72n8UuSc4QtIui3n6v9xU21ZcBgy7QsUMknyYZhgRkWvHiabFBznWEO-fPkxTgeAQSTmm-SXTVYR9n7EHtKL79WVXaTVv7Q2y69_kUxtWkZboeO_qT7MIRDtMOPu3fpl9BQ5_tDavsm_W4739jJh_5l8qy13UivHuZZ8u3jh335KdtdX16VF7vM5aCmrFWAhayd0KSF5kIgCdfKNq9RItUIpBV3bY7SOic4KXRC5gUXSjUkCPlZcrX6NsEezRD9rY13Jlhv7hchHoyNk3cdGeC2mWNycLXLG8FrzpyiWqMSyjm2eL1evYYYfp5onMwxnOJ8_2gY18gKKdSi4qvKxTCOkdrHVASzVGDWCsxSgXmoYKberNRvqkM7Ok-9o0cSAAqmNM_5_IIlQ_2_uvTT_ZeX4dRPM3q-op7oH6KBSxCc_wWFtKET</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Dente, Laura</creator><creator>Guerriero, Leila</creator><creator>Comite, Davide</creator><creator>Pierdicca, Nazzareno</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1232-5377</orcidid><orcidid>https://orcid.org/0000-0002-5080-3966</orcidid><orcidid>https://orcid.org/0000-0002-0812-1048</orcidid><orcidid>https://orcid.org/0000-0003-0087-4667</orcidid></search><sort><creationdate>2020</creationdate><title>Space-Borne GNSS-R Signal Over a Complex Topography: Modeling and Validation</title><author>Dente, Laura ; Guerriero, Leila ; Comite, Davide ; Pierdicca, Nazzareno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-f80157bc69e9693661e6cf7f4b171eb10e983cf417acc63e81c67453688de6e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Airborne observation</topic><topic>Coherent scattering</topic><topic>Computer simulation</topic><topic>Elevation</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Geography, Physical</topic><topic>Global navigation satellite system</topic><topic>Global Navigation Satellite Systems (GNSS) reflectometry</topic><topic>Imaging Science & Photographic Technology</topic><topic>Incoherent scattering</topic><topic>Inhomogeneity</topic><topic>land applications</topic><topic>Land cover</topic><topic>Mathematical model</topic><topic>Navigation</topic><topic>Navigation satellites</topic><topic>Navigational satellites</topic><topic>Object oriented modeling</topic><topic>Physical Geography</topic><topic>Physical Sciences</topic><topic>Receivers</topic><topic>Reflectance</topic><topic>Reflectometry</topic><topic>Remote monitoring</topic><topic>Remote Sensing</topic><topic>Satellite observation</topic><topic>Saturation</topic><topic>Scattering</topic><topic>scattering model</topic><topic>Science & Technology</topic><topic>Sea surface</topic><topic>simulator</topic><topic>Simulators</topic><topic>Soil</topic><topic>Soil moisture</topic><topic>Soils</topic><topic>Surface topography</topic><topic>TechDemoSat-1 (TDS-1)</topic><topic>Technology</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dente, Laura</creatorcontrib><creatorcontrib>Guerriero, Leila</creatorcontrib><creatorcontrib>Comite, Davide</creatorcontrib><creatorcontrib>Pierdicca, Nazzareno</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dente, Laura</au><au>Guerriero, Leila</au><au>Comite, Davide</au><au>Pierdicca, Nazzareno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Space-Borne GNSS-R Signal Over a Complex Topography: Modeling and Validation</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><stitle>IEEE J-STARS</stitle><date>2020</date><risdate>2020</risdate><volume>13</volume><spage>1218</spage><epage>1233</epage><pages>1218-1233</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>A significant quantity of space-borne Global Navigation Satellite Systems-Reflectometry (GNSS-R) data over land was made available in the last decade, leading to an increasing interest in the assessment of the potentialities of this new remote sensing technique for land monitoring. In this frame, an electromagnetic simulator, such as the Soil And VEgetation Reflection Simulator (SAVERS), has the key role to support the understanding of the physical mechanism involved in the bistatic scattering and to identify the surface features mainly contributing to the observed signal. Originally developed for ground and airborne GNSS-R observations over homogeneous areas, in this study, SAVERS was upgraded to account for space-borne systems. The new version of SAVERS takes into account the inhomogeneity characterizing the large area observed from space altitudes, due to a variable surface elevation and land cover. Coherent and incoherent scattering and polarization rotation are computed taking into account the local slope and elevation of the surface. The simulator was validated against TechDemoSat-1 observations over a bare surface with a complex topography and over a forested surface with a gentle topography. The validation results show the capability of SAVERS to correctly estimate the effect of the topography, enhancing the understanding of the observations. Moreover, it was found that the sensitivity to soil moisture is independent of the topography (about 1.5 dB for a 10% variation of soil moisture). Whereas a saturation of the GNSS-R reflectivity over a variable topography is reached for lower values of biomass, earlier than in the flat case.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2020.2975187</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1232-5377</orcidid><orcidid>https://orcid.org/0000-0002-5080-3966</orcidid><orcidid>https://orcid.org/0000-0002-0812-1048</orcidid><orcidid>https://orcid.org/0000-0003-0087-4667</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.1218-1233 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_proquest_journals_2391257681 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Airborne observation Coherent scattering Computer simulation Elevation Engineering Engineering, Electrical & Electronic Geography, Physical Global navigation satellite system Global Navigation Satellite Systems (GNSS) reflectometry Imaging Science & Photographic Technology Incoherent scattering Inhomogeneity land applications Land cover Mathematical model Navigation Navigation satellites Navigational satellites Object oriented modeling Physical Geography Physical Sciences Receivers Reflectance Reflectometry Remote monitoring Remote Sensing Satellite observation Saturation Scattering scattering model Science & Technology Sea surface simulator Simulators Soil Soil moisture Soils Surface topography TechDemoSat-1 (TDS-1) Technology Topography |
title | Space-Borne GNSS-R Signal Over a Complex Topography: Modeling and Validation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T15%3A31%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Space-Borne%20GNSS-R%20Signal%20Over%20a%20Complex%20Topography:%20Modeling%20and%20Validation&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Dente,%20Laura&rft.date=2020&rft.volume=13&rft.spage=1218&rft.epage=1233&rft.pages=1218-1233&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2020.2975187&rft_dat=%3Cproquest_webof%3E2391257681%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2391257681&rft_id=info:pmid/&rft_ieee_id=9037063&rft_doaj_id=oai_doaj_org_article_03ad9e940cbc4d63b32c8eb91868cc21&rfr_iscdi=true |