Maritime Coverage Enhancement Using UAVs Coordinated With Hybrid Satellite-Terrestrial Networks

Due to the agile maneuverability, unmanned aerial vehicles (UAVs) have shown great promise for on-demand communications. In practice, UAV-aided aerial base stations are not separate. Instead, they rely on existing satellites/terrestrial systems for spectrum sharing and efficient backhaul. In this ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2020-04, Vol.68 (4), p.2355-2369
Hauptverfasser: Li, Xiangling, Feng, Wei, Chen, Yunfei, Wang, Cheng-Xiang, Ge, Ning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2369
container_issue 4
container_start_page 2355
container_title IEEE transactions on communications
container_volume 68
creator Li, Xiangling
Feng, Wei
Chen, Yunfei
Wang, Cheng-Xiang
Ge, Ning
description Due to the agile maneuverability, unmanned aerial vehicles (UAVs) have shown great promise for on-demand communications. In practice, UAV-aided aerial base stations are not separate. Instead, they rely on existing satellites/terrestrial systems for spectrum sharing and efficient backhaul. In this case, how to coordinate satellites, UAVs and terrestrial systems is still an open issue. In this paper, we deploy UAVs for coverage enhancement of a hybrid satellite-terrestrial maritime communication network. Using a typical composite channel model including both large-scale and small-scale fading, the UAV trajectory and in-flight transmit power are jointly optimized, subject to constraints on UAV kinematics, tolerable interference, backhaul, and the total energy of the UAV for communications. Different from existing studies, only the location-dependent large-scale channel state information (CSI) is assumed available, because it is difficult to obtain the small-scale CSI before takeoff in practice and the ship positions can be obtained via the dedicated maritime Automatic Identification System. The optimization problem is non-convex. We solve it by using problem decomposition, successive convex optimization and bisection searching tools. Simulation results demonstrate that the UAV fits well with existing satellite and terrestrial systems, using the proposed optimization framework.
doi_str_mv 10.1109/TCOMM.2020.2966715
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2391257634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8960465</ieee_id><sourcerecordid>2391257634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-b50d027bd3cdc7001bbd4e550d75dc0c62dddf0f751d1c5b8a33afdab8b2afe63</originalsourceid><addsrcrecordid>eNo9kFFPwjAUhRujiYj-AX1Z4vPwtl3X7pEQFBOQB0Efm269g-LYsB0a_r1DjE83Ofece08-Qm4pDCiF7GExms9mAwYMBixLU0nFGelRIVQMSshz0gPIIE6lVJfkKoQNACTAeY_omfGudVuMRs0XerPCaFyvTV3gFus2WgZXr6Ll8C10-8ZbV5sWbfTu2nU0OeTe2ei1U6rKtRgv0HsMrXemil6w_W78R7gmF6WpAt78zT5ZPo4Xo0k8nT89j4bTuOBKtXEuwAKTueWFLSQAzXOboOhUKWwBRcqstSWUUlBLC5Erw7kprclVzkyJKe-T-9PdnW8-910LvWn2vu5easYzyoRMedK52MlV-CYEj6Xeebc1_qAp6CNI_QtSH0HqP5Bd6O4Ucoj4H1BZCkkq-A-B0nFT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391257634</pqid></control><display><type>article</type><title>Maritime Coverage Enhancement Using UAVs Coordinated With Hybrid Satellite-Terrestrial Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Xiangling ; Feng, Wei ; Chen, Yunfei ; Wang, Cheng-Xiang ; Ge, Ning</creator><creatorcontrib>Li, Xiangling ; Feng, Wei ; Chen, Yunfei ; Wang, Cheng-Xiang ; Ge, Ning</creatorcontrib><description>Due to the agile maneuverability, unmanned aerial vehicles (UAVs) have shown great promise for on-demand communications. In practice, UAV-aided aerial base stations are not separate. Instead, they rely on existing satellites/terrestrial systems for spectrum sharing and efficient backhaul. In this case, how to coordinate satellites, UAVs and terrestrial systems is still an open issue. In this paper, we deploy UAVs for coverage enhancement of a hybrid satellite-terrestrial maritime communication network. Using a typical composite channel model including both large-scale and small-scale fading, the UAV trajectory and in-flight transmit power are jointly optimized, subject to constraints on UAV kinematics, tolerable interference, backhaul, and the total energy of the UAV for communications. Different from existing studies, only the location-dependent large-scale channel state information (CSI) is assumed available, because it is difficult to obtain the small-scale CSI before takeoff in practice and the ship positions can be obtained via the dedicated maritime Automatic Identification System. The optimization problem is non-convex. We solve it by using problem decomposition, successive convex optimization and bisection searching tools. Simulation results demonstrate that the UAV fits well with existing satellite and terrestrial systems, using the proposed optimization framework.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2020.2966715</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Autonomous underwater vehicles ; Broadband antennas ; Broadband communication ; Computer simulation ; Convexity ; Hybrid satellite-terrestrial network ; Interference ; Kinematics ; Maneuverability ; Marine vehicles ; maritime communications ; Maritime satellites ; Oceans ; Optimization ; power allocation ; Satellites ; Trajectory ; unmanned aerial vehicle (UAV) ; Unmanned aerial vehicles</subject><ispartof>IEEE transactions on communications, 2020-04, Vol.68 (4), p.2355-2369</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-b50d027bd3cdc7001bbd4e550d75dc0c62dddf0f751d1c5b8a33afdab8b2afe63</citedby><cites>FETCH-LOGICAL-c388t-b50d027bd3cdc7001bbd4e550d75dc0c62dddf0f751d1c5b8a33afdab8b2afe63</cites><orcidid>0000-0001-5147-2145 ; 0000-0002-4922-7025 ; 0000-0001-8083-1805 ; 0000-0002-9729-9592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8960465$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8960465$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Xiangling</creatorcontrib><creatorcontrib>Feng, Wei</creatorcontrib><creatorcontrib>Chen, Yunfei</creatorcontrib><creatorcontrib>Wang, Cheng-Xiang</creatorcontrib><creatorcontrib>Ge, Ning</creatorcontrib><title>Maritime Coverage Enhancement Using UAVs Coordinated With Hybrid Satellite-Terrestrial Networks</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>Due to the agile maneuverability, unmanned aerial vehicles (UAVs) have shown great promise for on-demand communications. In practice, UAV-aided aerial base stations are not separate. Instead, they rely on existing satellites/terrestrial systems for spectrum sharing and efficient backhaul. In this case, how to coordinate satellites, UAVs and terrestrial systems is still an open issue. In this paper, we deploy UAVs for coverage enhancement of a hybrid satellite-terrestrial maritime communication network. Using a typical composite channel model including both large-scale and small-scale fading, the UAV trajectory and in-flight transmit power are jointly optimized, subject to constraints on UAV kinematics, tolerable interference, backhaul, and the total energy of the UAV for communications. Different from existing studies, only the location-dependent large-scale channel state information (CSI) is assumed available, because it is difficult to obtain the small-scale CSI before takeoff in practice and the ship positions can be obtained via the dedicated maritime Automatic Identification System. The optimization problem is non-convex. We solve it by using problem decomposition, successive convex optimization and bisection searching tools. Simulation results demonstrate that the UAV fits well with existing satellite and terrestrial systems, using the proposed optimization framework.</description><subject>Autonomous underwater vehicles</subject><subject>Broadband antennas</subject><subject>Broadband communication</subject><subject>Computer simulation</subject><subject>Convexity</subject><subject>Hybrid satellite-terrestrial network</subject><subject>Interference</subject><subject>Kinematics</subject><subject>Maneuverability</subject><subject>Marine vehicles</subject><subject>maritime communications</subject><subject>Maritime satellites</subject><subject>Oceans</subject><subject>Optimization</subject><subject>power allocation</subject><subject>Satellites</subject><subject>Trajectory</subject><subject>unmanned aerial vehicle (UAV)</subject><subject>Unmanned aerial vehicles</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFPwjAUhRujiYj-AX1Z4vPwtl3X7pEQFBOQB0Efm269g-LYsB0a_r1DjE83Ofece08-Qm4pDCiF7GExms9mAwYMBixLU0nFGelRIVQMSshz0gPIIE6lVJfkKoQNACTAeY_omfGudVuMRs0XerPCaFyvTV3gFus2WgZXr6Ll8C10-8ZbV5sWbfTu2nU0OeTe2ei1U6rKtRgv0HsMrXemil6w_W78R7gmF6WpAt78zT5ZPo4Xo0k8nT89j4bTuOBKtXEuwAKTueWFLSQAzXOboOhUKWwBRcqstSWUUlBLC5Erw7kprclVzkyJKe-T-9PdnW8-910LvWn2vu5easYzyoRMedK52MlV-CYEj6Xeebc1_qAp6CNI_QtSH0HqP5Bd6O4Ucoj4H1BZCkkq-A-B0nFT</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Li, Xiangling</creator><creator>Feng, Wei</creator><creator>Chen, Yunfei</creator><creator>Wang, Cheng-Xiang</creator><creator>Ge, Ning</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5147-2145</orcidid><orcidid>https://orcid.org/0000-0002-4922-7025</orcidid><orcidid>https://orcid.org/0000-0001-8083-1805</orcidid><orcidid>https://orcid.org/0000-0002-9729-9592</orcidid></search><sort><creationdate>20200401</creationdate><title>Maritime Coverage Enhancement Using UAVs Coordinated With Hybrid Satellite-Terrestrial Networks</title><author>Li, Xiangling ; Feng, Wei ; Chen, Yunfei ; Wang, Cheng-Xiang ; Ge, Ning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-b50d027bd3cdc7001bbd4e550d75dc0c62dddf0f751d1c5b8a33afdab8b2afe63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Autonomous underwater vehicles</topic><topic>Broadband antennas</topic><topic>Broadband communication</topic><topic>Computer simulation</topic><topic>Convexity</topic><topic>Hybrid satellite-terrestrial network</topic><topic>Interference</topic><topic>Kinematics</topic><topic>Maneuverability</topic><topic>Marine vehicles</topic><topic>maritime communications</topic><topic>Maritime satellites</topic><topic>Oceans</topic><topic>Optimization</topic><topic>power allocation</topic><topic>Satellites</topic><topic>Trajectory</topic><topic>unmanned aerial vehicle (UAV)</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiangling</creatorcontrib><creatorcontrib>Feng, Wei</creatorcontrib><creatorcontrib>Chen, Yunfei</creatorcontrib><creatorcontrib>Wang, Cheng-Xiang</creatorcontrib><creatorcontrib>Ge, Ning</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Xiangling</au><au>Feng, Wei</au><au>Chen, Yunfei</au><au>Wang, Cheng-Xiang</au><au>Ge, Ning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maritime Coverage Enhancement Using UAVs Coordinated With Hybrid Satellite-Terrestrial Networks</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>68</volume><issue>4</issue><spage>2355</spage><epage>2369</epage><pages>2355-2369</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>Due to the agile maneuverability, unmanned aerial vehicles (UAVs) have shown great promise for on-demand communications. In practice, UAV-aided aerial base stations are not separate. Instead, they rely on existing satellites/terrestrial systems for spectrum sharing and efficient backhaul. In this case, how to coordinate satellites, UAVs and terrestrial systems is still an open issue. In this paper, we deploy UAVs for coverage enhancement of a hybrid satellite-terrestrial maritime communication network. Using a typical composite channel model including both large-scale and small-scale fading, the UAV trajectory and in-flight transmit power are jointly optimized, subject to constraints on UAV kinematics, tolerable interference, backhaul, and the total energy of the UAV for communications. Different from existing studies, only the location-dependent large-scale channel state information (CSI) is assumed available, because it is difficult to obtain the small-scale CSI before takeoff in practice and the ship positions can be obtained via the dedicated maritime Automatic Identification System. The optimization problem is non-convex. We solve it by using problem decomposition, successive convex optimization and bisection searching tools. Simulation results demonstrate that the UAV fits well with existing satellite and terrestrial systems, using the proposed optimization framework.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2020.2966715</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5147-2145</orcidid><orcidid>https://orcid.org/0000-0002-4922-7025</orcidid><orcidid>https://orcid.org/0000-0001-8083-1805</orcidid><orcidid>https://orcid.org/0000-0002-9729-9592</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2020-04, Vol.68 (4), p.2355-2369
issn 0090-6778
1558-0857
language eng
recordid cdi_proquest_journals_2391257634
source IEEE Electronic Library (IEL)
subjects Autonomous underwater vehicles
Broadband antennas
Broadband communication
Computer simulation
Convexity
Hybrid satellite-terrestrial network
Interference
Kinematics
Maneuverability
Marine vehicles
maritime communications
Maritime satellites
Oceans
Optimization
power allocation
Satellites
Trajectory
unmanned aerial vehicle (UAV)
Unmanned aerial vehicles
title Maritime Coverage Enhancement Using UAVs Coordinated With Hybrid Satellite-Terrestrial Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A09%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maritime%20Coverage%20Enhancement%20Using%20UAVs%20Coordinated%20With%20Hybrid%20Satellite-Terrestrial%20Networks&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Li,%20Xiangling&rft.date=2020-04-01&rft.volume=68&rft.issue=4&rft.spage=2355&rft.epage=2369&rft.pages=2355-2369&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2020.2966715&rft_dat=%3Cproquest_RIE%3E2391257634%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2391257634&rft_id=info:pmid/&rft_ieee_id=8960465&rfr_iscdi=true