Maritime Coverage Enhancement Using UAVs Coordinated With Hybrid Satellite-Terrestrial Networks
Due to the agile maneuverability, unmanned aerial vehicles (UAVs) have shown great promise for on-demand communications. In practice, UAV-aided aerial base stations are not separate. Instead, they rely on existing satellites/terrestrial systems for spectrum sharing and efficient backhaul. In this ca...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on communications 2020-04, Vol.68 (4), p.2355-2369 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2369 |
---|---|
container_issue | 4 |
container_start_page | 2355 |
container_title | IEEE transactions on communications |
container_volume | 68 |
creator | Li, Xiangling Feng, Wei Chen, Yunfei Wang, Cheng-Xiang Ge, Ning |
description | Due to the agile maneuverability, unmanned aerial vehicles (UAVs) have shown great promise for on-demand communications. In practice, UAV-aided aerial base stations are not separate. Instead, they rely on existing satellites/terrestrial systems for spectrum sharing and efficient backhaul. In this case, how to coordinate satellites, UAVs and terrestrial systems is still an open issue. In this paper, we deploy UAVs for coverage enhancement of a hybrid satellite-terrestrial maritime communication network. Using a typical composite channel model including both large-scale and small-scale fading, the UAV trajectory and in-flight transmit power are jointly optimized, subject to constraints on UAV kinematics, tolerable interference, backhaul, and the total energy of the UAV for communications. Different from existing studies, only the location-dependent large-scale channel state information (CSI) is assumed available, because it is difficult to obtain the small-scale CSI before takeoff in practice and the ship positions can be obtained via the dedicated maritime Automatic Identification System. The optimization problem is non-convex. We solve it by using problem decomposition, successive convex optimization and bisection searching tools. Simulation results demonstrate that the UAV fits well with existing satellite and terrestrial systems, using the proposed optimization framework. |
doi_str_mv | 10.1109/TCOMM.2020.2966715 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2391257634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8960465</ieee_id><sourcerecordid>2391257634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-b50d027bd3cdc7001bbd4e550d75dc0c62dddf0f751d1c5b8a33afdab8b2afe63</originalsourceid><addsrcrecordid>eNo9kFFPwjAUhRujiYj-AX1Z4vPwtl3X7pEQFBOQB0Efm269g-LYsB0a_r1DjE83Ofece08-Qm4pDCiF7GExms9mAwYMBixLU0nFGelRIVQMSshz0gPIIE6lVJfkKoQNACTAeY_omfGudVuMRs0XerPCaFyvTV3gFus2WgZXr6Ll8C10-8ZbV5sWbfTu2nU0OeTe2ei1U6rKtRgv0HsMrXemil6w_W78R7gmF6WpAt78zT5ZPo4Xo0k8nT89j4bTuOBKtXEuwAKTueWFLSQAzXOboOhUKWwBRcqstSWUUlBLC5Erw7kprclVzkyJKe-T-9PdnW8-910LvWn2vu5easYzyoRMedK52MlV-CYEj6Xeebc1_qAp6CNI_QtSH0HqP5Bd6O4Ucoj4H1BZCkkq-A-B0nFT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391257634</pqid></control><display><type>article</type><title>Maritime Coverage Enhancement Using UAVs Coordinated With Hybrid Satellite-Terrestrial Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Xiangling ; Feng, Wei ; Chen, Yunfei ; Wang, Cheng-Xiang ; Ge, Ning</creator><creatorcontrib>Li, Xiangling ; Feng, Wei ; Chen, Yunfei ; Wang, Cheng-Xiang ; Ge, Ning</creatorcontrib><description>Due to the agile maneuverability, unmanned aerial vehicles (UAVs) have shown great promise for on-demand communications. In practice, UAV-aided aerial base stations are not separate. Instead, they rely on existing satellites/terrestrial systems for spectrum sharing and efficient backhaul. In this case, how to coordinate satellites, UAVs and terrestrial systems is still an open issue. In this paper, we deploy UAVs for coverage enhancement of a hybrid satellite-terrestrial maritime communication network. Using a typical composite channel model including both large-scale and small-scale fading, the UAV trajectory and in-flight transmit power are jointly optimized, subject to constraints on UAV kinematics, tolerable interference, backhaul, and the total energy of the UAV for communications. Different from existing studies, only the location-dependent large-scale channel state information (CSI) is assumed available, because it is difficult to obtain the small-scale CSI before takeoff in practice and the ship positions can be obtained via the dedicated maritime Automatic Identification System. The optimization problem is non-convex. We solve it by using problem decomposition, successive convex optimization and bisection searching tools. Simulation results demonstrate that the UAV fits well with existing satellite and terrestrial systems, using the proposed optimization framework.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2020.2966715</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Autonomous underwater vehicles ; Broadband antennas ; Broadband communication ; Computer simulation ; Convexity ; Hybrid satellite-terrestrial network ; Interference ; Kinematics ; Maneuverability ; Marine vehicles ; maritime communications ; Maritime satellites ; Oceans ; Optimization ; power allocation ; Satellites ; Trajectory ; unmanned aerial vehicle (UAV) ; Unmanned aerial vehicles</subject><ispartof>IEEE transactions on communications, 2020-04, Vol.68 (4), p.2355-2369</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-b50d027bd3cdc7001bbd4e550d75dc0c62dddf0f751d1c5b8a33afdab8b2afe63</citedby><cites>FETCH-LOGICAL-c388t-b50d027bd3cdc7001bbd4e550d75dc0c62dddf0f751d1c5b8a33afdab8b2afe63</cites><orcidid>0000-0001-5147-2145 ; 0000-0002-4922-7025 ; 0000-0001-8083-1805 ; 0000-0002-9729-9592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8960465$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8960465$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Xiangling</creatorcontrib><creatorcontrib>Feng, Wei</creatorcontrib><creatorcontrib>Chen, Yunfei</creatorcontrib><creatorcontrib>Wang, Cheng-Xiang</creatorcontrib><creatorcontrib>Ge, Ning</creatorcontrib><title>Maritime Coverage Enhancement Using UAVs Coordinated With Hybrid Satellite-Terrestrial Networks</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>Due to the agile maneuverability, unmanned aerial vehicles (UAVs) have shown great promise for on-demand communications. In practice, UAV-aided aerial base stations are not separate. Instead, they rely on existing satellites/terrestrial systems for spectrum sharing and efficient backhaul. In this case, how to coordinate satellites, UAVs and terrestrial systems is still an open issue. In this paper, we deploy UAVs for coverage enhancement of a hybrid satellite-terrestrial maritime communication network. Using a typical composite channel model including both large-scale and small-scale fading, the UAV trajectory and in-flight transmit power are jointly optimized, subject to constraints on UAV kinematics, tolerable interference, backhaul, and the total energy of the UAV for communications. Different from existing studies, only the location-dependent large-scale channel state information (CSI) is assumed available, because it is difficult to obtain the small-scale CSI before takeoff in practice and the ship positions can be obtained via the dedicated maritime Automatic Identification System. The optimization problem is non-convex. We solve it by using problem decomposition, successive convex optimization and bisection searching tools. Simulation results demonstrate that the UAV fits well with existing satellite and terrestrial systems, using the proposed optimization framework.</description><subject>Autonomous underwater vehicles</subject><subject>Broadband antennas</subject><subject>Broadband communication</subject><subject>Computer simulation</subject><subject>Convexity</subject><subject>Hybrid satellite-terrestrial network</subject><subject>Interference</subject><subject>Kinematics</subject><subject>Maneuverability</subject><subject>Marine vehicles</subject><subject>maritime communications</subject><subject>Maritime satellites</subject><subject>Oceans</subject><subject>Optimization</subject><subject>power allocation</subject><subject>Satellites</subject><subject>Trajectory</subject><subject>unmanned aerial vehicle (UAV)</subject><subject>Unmanned aerial vehicles</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFPwjAUhRujiYj-AX1Z4vPwtl3X7pEQFBOQB0Efm269g-LYsB0a_r1DjE83Ofece08-Qm4pDCiF7GExms9mAwYMBixLU0nFGelRIVQMSshz0gPIIE6lVJfkKoQNACTAeY_omfGudVuMRs0XerPCaFyvTV3gFus2WgZXr6Ll8C10-8ZbV5sWbfTu2nU0OeTe2ei1U6rKtRgv0HsMrXemil6w_W78R7gmF6WpAt78zT5ZPo4Xo0k8nT89j4bTuOBKtXEuwAKTueWFLSQAzXOboOhUKWwBRcqstSWUUlBLC5Erw7kprclVzkyJKe-T-9PdnW8-910LvWn2vu5easYzyoRMedK52MlV-CYEj6Xeebc1_qAp6CNI_QtSH0HqP5Bd6O4Ucoj4H1BZCkkq-A-B0nFT</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Li, Xiangling</creator><creator>Feng, Wei</creator><creator>Chen, Yunfei</creator><creator>Wang, Cheng-Xiang</creator><creator>Ge, Ning</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5147-2145</orcidid><orcidid>https://orcid.org/0000-0002-4922-7025</orcidid><orcidid>https://orcid.org/0000-0001-8083-1805</orcidid><orcidid>https://orcid.org/0000-0002-9729-9592</orcidid></search><sort><creationdate>20200401</creationdate><title>Maritime Coverage Enhancement Using UAVs Coordinated With Hybrid Satellite-Terrestrial Networks</title><author>Li, Xiangling ; Feng, Wei ; Chen, Yunfei ; Wang, Cheng-Xiang ; Ge, Ning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-b50d027bd3cdc7001bbd4e550d75dc0c62dddf0f751d1c5b8a33afdab8b2afe63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Autonomous underwater vehicles</topic><topic>Broadband antennas</topic><topic>Broadband communication</topic><topic>Computer simulation</topic><topic>Convexity</topic><topic>Hybrid satellite-terrestrial network</topic><topic>Interference</topic><topic>Kinematics</topic><topic>Maneuverability</topic><topic>Marine vehicles</topic><topic>maritime communications</topic><topic>Maritime satellites</topic><topic>Oceans</topic><topic>Optimization</topic><topic>power allocation</topic><topic>Satellites</topic><topic>Trajectory</topic><topic>unmanned aerial vehicle (UAV)</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiangling</creatorcontrib><creatorcontrib>Feng, Wei</creatorcontrib><creatorcontrib>Chen, Yunfei</creatorcontrib><creatorcontrib>Wang, Cheng-Xiang</creatorcontrib><creatorcontrib>Ge, Ning</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Xiangling</au><au>Feng, Wei</au><au>Chen, Yunfei</au><au>Wang, Cheng-Xiang</au><au>Ge, Ning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maritime Coverage Enhancement Using UAVs Coordinated With Hybrid Satellite-Terrestrial Networks</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>68</volume><issue>4</issue><spage>2355</spage><epage>2369</epage><pages>2355-2369</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>Due to the agile maneuverability, unmanned aerial vehicles (UAVs) have shown great promise for on-demand communications. In practice, UAV-aided aerial base stations are not separate. Instead, they rely on existing satellites/terrestrial systems for spectrum sharing and efficient backhaul. In this case, how to coordinate satellites, UAVs and terrestrial systems is still an open issue. In this paper, we deploy UAVs for coverage enhancement of a hybrid satellite-terrestrial maritime communication network. Using a typical composite channel model including both large-scale and small-scale fading, the UAV trajectory and in-flight transmit power are jointly optimized, subject to constraints on UAV kinematics, tolerable interference, backhaul, and the total energy of the UAV for communications. Different from existing studies, only the location-dependent large-scale channel state information (CSI) is assumed available, because it is difficult to obtain the small-scale CSI before takeoff in practice and the ship positions can be obtained via the dedicated maritime Automatic Identification System. The optimization problem is non-convex. We solve it by using problem decomposition, successive convex optimization and bisection searching tools. Simulation results demonstrate that the UAV fits well with existing satellite and terrestrial systems, using the proposed optimization framework.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2020.2966715</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5147-2145</orcidid><orcidid>https://orcid.org/0000-0002-4922-7025</orcidid><orcidid>https://orcid.org/0000-0001-8083-1805</orcidid><orcidid>https://orcid.org/0000-0002-9729-9592</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0090-6778 |
ispartof | IEEE transactions on communications, 2020-04, Vol.68 (4), p.2355-2369 |
issn | 0090-6778 1558-0857 |
language | eng |
recordid | cdi_proquest_journals_2391257634 |
source | IEEE Electronic Library (IEL) |
subjects | Autonomous underwater vehicles Broadband antennas Broadband communication Computer simulation Convexity Hybrid satellite-terrestrial network Interference Kinematics Maneuverability Marine vehicles maritime communications Maritime satellites Oceans Optimization power allocation Satellites Trajectory unmanned aerial vehicle (UAV) Unmanned aerial vehicles |
title | Maritime Coverage Enhancement Using UAVs Coordinated With Hybrid Satellite-Terrestrial Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A09%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maritime%20Coverage%20Enhancement%20Using%20UAVs%20Coordinated%20With%20Hybrid%20Satellite-Terrestrial%20Networks&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Li,%20Xiangling&rft.date=2020-04-01&rft.volume=68&rft.issue=4&rft.spage=2355&rft.epage=2369&rft.pages=2355-2369&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2020.2966715&rft_dat=%3Cproquest_RIE%3E2391257634%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2391257634&rft_id=info:pmid/&rft_ieee_id=8960465&rfr_iscdi=true |