Dextran-Functionalized Semiconductor Quantum Dot Bioconjugates for Bioanalysis and Imaging
The prerequisites for maximizing the advantageous optical properties of colloidal semiconductor quantum dots (QDs) in biological applications are effective surface functionalization and bioconjugation strategies. Functionalization with dextran has been highly successful with some nanoparticle materi...
Gespeichert in:
Veröffentlicht in: | Bioconjugate chemistry 2020-03, Vol.31 (3), p.861-874 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 874 |
---|---|
container_issue | 3 |
container_start_page | 861 |
container_title | Bioconjugate chemistry |
container_volume | 31 |
creator | Rees, Kelly Tran, Michael V Massey, Melissa Kim, Hyungki Krause, Katherine D Algar, W. Russ |
description | The prerequisites for maximizing the advantageous optical properties of colloidal semiconductor quantum dots (QDs) in biological applications are effective surface functionalization and bioconjugation strategies. Functionalization with dextran has been highly successful with some nanoparticle materials, but has had very limited application with QDs. Here, we report the preparation, characterization, and proof-of-concept applications of dextran-functionalized QDs. Multiple approaches to dextran ligands were evaluated, including performance with respect to colloidal stability across a range of pH, nonspecific binding with proteins and cells, and microinjection into cells and viability assays. Multiple bioconjugation strategies were demonstrated and applied, including covalent coupling to develop a simple pH sensor, binding of polyhistidine-tagged peptides to the QD for energy transfer-based proteolytic activity assays, and binding with tetrameric antibody complexes (TACs) to enable a sandwich immunoassay and cell immunolabeling and imaging. Our results show that dextran ligands are highly promising for the functionalization of QDs, and that the design of the ligands is tailorable to help optimally meet the requirements of applications. |
doi_str_mv | 10.1021/acs.bioconjchem.0c00019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2391215398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2391215398</sourcerecordid><originalsourceid>FETCH-LOGICAL-a385t-9d478c739500ae01b55d3f85164fbdcc018102e14bb44f2fd7a7e9821f400a213</originalsourceid><addsrcrecordid>eNqFkMtOwzAURC0EouXxCxCJdYqv7RBnCS2FSpUQAjZsLMePkqqJi51IlK_HVUrFjpUt35lzx4PQJeARYALXUoVRWTnlmqX6MPUIK4wxFAdoCBnBKeNADuMdM5oCx2SATkJYRkkBnByjASWYU57BEL1PzFfrZZNOu0a1lWvkqvo2OnkxdRXpulOt88lzJ5u2q5OJa5O7fm23kK0JiY3T-CKjbxOqkMhGJ7NaLqpmcYaOrFwFc747T9Hb9P51_JjOnx5m49t5KmOENi00y7nKaZFhLA2GMss0tTHcDbOlVgoDj182wMqSMUuszmVuCk7AsmggQE_RVc9de_fZmdCKpet8DBQEoQUQyGjBoyrvVcq7ELyxYu2rWvqNACy2nYrYqfjTqdh1Gp0XO35X1kbvfb8lRgHtBVvCfvd_2B-K3IkT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391215398</pqid></control><display><type>article</type><title>Dextran-Functionalized Semiconductor Quantum Dot Bioconjugates for Bioanalysis and Imaging</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Rees, Kelly ; Tran, Michael V ; Massey, Melissa ; Kim, Hyungki ; Krause, Katherine D ; Algar, W. Russ</creator><creatorcontrib>Rees, Kelly ; Tran, Michael V ; Massey, Melissa ; Kim, Hyungki ; Krause, Katherine D ; Algar, W. Russ</creatorcontrib><description>The prerequisites for maximizing the advantageous optical properties of colloidal semiconductor quantum dots (QDs) in biological applications are effective surface functionalization and bioconjugation strategies. Functionalization with dextran has been highly successful with some nanoparticle materials, but has had very limited application with QDs. Here, we report the preparation, characterization, and proof-of-concept applications of dextran-functionalized QDs. Multiple approaches to dextran ligands were evaluated, including performance with respect to colloidal stability across a range of pH, nonspecific binding with proteins and cells, and microinjection into cells and viability assays. Multiple bioconjugation strategies were demonstrated and applied, including covalent coupling to develop a simple pH sensor, binding of polyhistidine-tagged peptides to the QD for energy transfer-based proteolytic activity assays, and binding with tetrameric antibody complexes (TACs) to enable a sandwich immunoassay and cell immunolabeling and imaging. Our results show that dextran ligands are highly promising for the functionalization of QDs, and that the design of the ligands is tailorable to help optimally meet the requirements of applications.</description><identifier>ISSN: 1043-1802</identifier><identifier>EISSN: 1520-4812</identifier><identifier>DOI: 10.1021/acs.bioconjchem.0c00019</identifier><identifier>PMID: 32083851</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>A549 Cells ; Antibodies ; Binding ; Biological effects ; Dextran ; Dextrans - chemistry ; Electrophoresis ; Energy transfer ; Humans ; Immunoassay ; Ligands ; Microinjection ; Molecular Imaging - methods ; Nanoparticles ; Optical Phenomena ; Optical properties ; Optimization ; Peptides ; pH effects ; pH sensors ; Polyhistidine ; Proteolysis ; Quantum dots ; Quantum Dots - chemistry ; Quantum Dots - metabolism ; Semiconductors ; Stability analysis ; Staining and Labeling ; Surface Properties</subject><ispartof>Bioconjugate chemistry, 2020-03, Vol.31 (3), p.861-874</ispartof><rights>Copyright American Chemical Society Mar 18, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a385t-9d478c739500ae01b55d3f85164fbdcc018102e14bb44f2fd7a7e9821f400a213</citedby><cites>FETCH-LOGICAL-a385t-9d478c739500ae01b55d3f85164fbdcc018102e14bb44f2fd7a7e9821f400a213</cites><orcidid>0000-0003-3442-7072</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.bioconjchem.0c00019$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.bioconjchem.0c00019$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32083851$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rees, Kelly</creatorcontrib><creatorcontrib>Tran, Michael V</creatorcontrib><creatorcontrib>Massey, Melissa</creatorcontrib><creatorcontrib>Kim, Hyungki</creatorcontrib><creatorcontrib>Krause, Katherine D</creatorcontrib><creatorcontrib>Algar, W. Russ</creatorcontrib><title>Dextran-Functionalized Semiconductor Quantum Dot Bioconjugates for Bioanalysis and Imaging</title><title>Bioconjugate chemistry</title><addtitle>Bioconjugate Chem</addtitle><description>The prerequisites for maximizing the advantageous optical properties of colloidal semiconductor quantum dots (QDs) in biological applications are effective surface functionalization and bioconjugation strategies. Functionalization with dextran has been highly successful with some nanoparticle materials, but has had very limited application with QDs. Here, we report the preparation, characterization, and proof-of-concept applications of dextran-functionalized QDs. Multiple approaches to dextran ligands were evaluated, including performance with respect to colloidal stability across a range of pH, nonspecific binding with proteins and cells, and microinjection into cells and viability assays. Multiple bioconjugation strategies were demonstrated and applied, including covalent coupling to develop a simple pH sensor, binding of polyhistidine-tagged peptides to the QD for energy transfer-based proteolytic activity assays, and binding with tetrameric antibody complexes (TACs) to enable a sandwich immunoassay and cell immunolabeling and imaging. Our results show that dextran ligands are highly promising for the functionalization of QDs, and that the design of the ligands is tailorable to help optimally meet the requirements of applications.</description><subject>A549 Cells</subject><subject>Antibodies</subject><subject>Binding</subject><subject>Biological effects</subject><subject>Dextran</subject><subject>Dextrans - chemistry</subject><subject>Electrophoresis</subject><subject>Energy transfer</subject><subject>Humans</subject><subject>Immunoassay</subject><subject>Ligands</subject><subject>Microinjection</subject><subject>Molecular Imaging - methods</subject><subject>Nanoparticles</subject><subject>Optical Phenomena</subject><subject>Optical properties</subject><subject>Optimization</subject><subject>Peptides</subject><subject>pH effects</subject><subject>pH sensors</subject><subject>Polyhistidine</subject><subject>Proteolysis</subject><subject>Quantum dots</subject><subject>Quantum Dots - chemistry</subject><subject>Quantum Dots - metabolism</subject><subject>Semiconductors</subject><subject>Stability analysis</subject><subject>Staining and Labeling</subject><subject>Surface Properties</subject><issn>1043-1802</issn><issn>1520-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOwzAURC0EouXxCxCJdYqv7RBnCS2FSpUQAjZsLMePkqqJi51IlK_HVUrFjpUt35lzx4PQJeARYALXUoVRWTnlmqX6MPUIK4wxFAdoCBnBKeNADuMdM5oCx2SATkJYRkkBnByjASWYU57BEL1PzFfrZZNOu0a1lWvkqvo2OnkxdRXpulOt88lzJ5u2q5OJa5O7fm23kK0JiY3T-CKjbxOqkMhGJ7NaLqpmcYaOrFwFc747T9Hb9P51_JjOnx5m49t5KmOENi00y7nKaZFhLA2GMss0tTHcDbOlVgoDj182wMqSMUuszmVuCk7AsmggQE_RVc9de_fZmdCKpet8DBQEoQUQyGjBoyrvVcq7ELyxYu2rWvqNACy2nYrYqfjTqdh1Gp0XO35X1kbvfb8lRgHtBVvCfvd_2B-K3IkT</recordid><startdate>20200318</startdate><enddate>20200318</enddate><creator>Rees, Kelly</creator><creator>Tran, Michael V</creator><creator>Massey, Melissa</creator><creator>Kim, Hyungki</creator><creator>Krause, Katherine D</creator><creator>Algar, W. Russ</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-3442-7072</orcidid></search><sort><creationdate>20200318</creationdate><title>Dextran-Functionalized Semiconductor Quantum Dot Bioconjugates for Bioanalysis and Imaging</title><author>Rees, Kelly ; Tran, Michael V ; Massey, Melissa ; Kim, Hyungki ; Krause, Katherine D ; Algar, W. Russ</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a385t-9d478c739500ae01b55d3f85164fbdcc018102e14bb44f2fd7a7e9821f400a213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>A549 Cells</topic><topic>Antibodies</topic><topic>Binding</topic><topic>Biological effects</topic><topic>Dextran</topic><topic>Dextrans - chemistry</topic><topic>Electrophoresis</topic><topic>Energy transfer</topic><topic>Humans</topic><topic>Immunoassay</topic><topic>Ligands</topic><topic>Microinjection</topic><topic>Molecular Imaging - methods</topic><topic>Nanoparticles</topic><topic>Optical Phenomena</topic><topic>Optical properties</topic><topic>Optimization</topic><topic>Peptides</topic><topic>pH effects</topic><topic>pH sensors</topic><topic>Polyhistidine</topic><topic>Proteolysis</topic><topic>Quantum dots</topic><topic>Quantum Dots - chemistry</topic><topic>Quantum Dots - metabolism</topic><topic>Semiconductors</topic><topic>Stability analysis</topic><topic>Staining and Labeling</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rees, Kelly</creatorcontrib><creatorcontrib>Tran, Michael V</creatorcontrib><creatorcontrib>Massey, Melissa</creatorcontrib><creatorcontrib>Kim, Hyungki</creatorcontrib><creatorcontrib>Krause, Katherine D</creatorcontrib><creatorcontrib>Algar, W. Russ</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Bioconjugate chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rees, Kelly</au><au>Tran, Michael V</au><au>Massey, Melissa</au><au>Kim, Hyungki</au><au>Krause, Katherine D</au><au>Algar, W. Russ</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dextran-Functionalized Semiconductor Quantum Dot Bioconjugates for Bioanalysis and Imaging</atitle><jtitle>Bioconjugate chemistry</jtitle><addtitle>Bioconjugate Chem</addtitle><date>2020-03-18</date><risdate>2020</risdate><volume>31</volume><issue>3</issue><spage>861</spage><epage>874</epage><pages>861-874</pages><issn>1043-1802</issn><eissn>1520-4812</eissn><abstract>The prerequisites for maximizing the advantageous optical properties of colloidal semiconductor quantum dots (QDs) in biological applications are effective surface functionalization and bioconjugation strategies. Functionalization with dextran has been highly successful with some nanoparticle materials, but has had very limited application with QDs. Here, we report the preparation, characterization, and proof-of-concept applications of dextran-functionalized QDs. Multiple approaches to dextran ligands were evaluated, including performance with respect to colloidal stability across a range of pH, nonspecific binding with proteins and cells, and microinjection into cells and viability assays. Multiple bioconjugation strategies were demonstrated and applied, including covalent coupling to develop a simple pH sensor, binding of polyhistidine-tagged peptides to the QD for energy transfer-based proteolytic activity assays, and binding with tetrameric antibody complexes (TACs) to enable a sandwich immunoassay and cell immunolabeling and imaging. Our results show that dextran ligands are highly promising for the functionalization of QDs, and that the design of the ligands is tailorable to help optimally meet the requirements of applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32083851</pmid><doi>10.1021/acs.bioconjchem.0c00019</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3442-7072</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1043-1802 |
ispartof | Bioconjugate chemistry, 2020-03, Vol.31 (3), p.861-874 |
issn | 1043-1802 1520-4812 |
language | eng |
recordid | cdi_proquest_journals_2391215398 |
source | MEDLINE; American Chemical Society Journals |
subjects | A549 Cells Antibodies Binding Biological effects Dextran Dextrans - chemistry Electrophoresis Energy transfer Humans Immunoassay Ligands Microinjection Molecular Imaging - methods Nanoparticles Optical Phenomena Optical properties Optimization Peptides pH effects pH sensors Polyhistidine Proteolysis Quantum dots Quantum Dots - chemistry Quantum Dots - metabolism Semiconductors Stability analysis Staining and Labeling Surface Properties |
title | Dextran-Functionalized Semiconductor Quantum Dot Bioconjugates for Bioanalysis and Imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A31%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dextran-Functionalized%20Semiconductor%20Quantum%20Dot%20Bioconjugates%20for%20Bioanalysis%20and%20Imaging&rft.jtitle=Bioconjugate%20chemistry&rft.au=Rees,%20Kelly&rft.date=2020-03-18&rft.volume=31&rft.issue=3&rft.spage=861&rft.epage=874&rft.pages=861-874&rft.issn=1043-1802&rft.eissn=1520-4812&rft_id=info:doi/10.1021/acs.bioconjchem.0c00019&rft_dat=%3Cproquest_cross%3E2391215398%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2391215398&rft_id=info:pmid/32083851&rfr_iscdi=true |