Dextran-Functionalized Semiconductor Quantum Dot Bioconjugates for Bioanalysis and Imaging

The prerequisites for maximizing the advantageous optical properties of colloidal semiconductor quantum dots (QDs) in biological applications are effective surface functionalization and bioconjugation strategies. Functionalization with dextran has been highly successful with some nanoparticle materi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioconjugate chemistry 2020-03, Vol.31 (3), p.861-874
Hauptverfasser: Rees, Kelly, Tran, Michael V, Massey, Melissa, Kim, Hyungki, Krause, Katherine D, Algar, W. Russ
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 874
container_issue 3
container_start_page 861
container_title Bioconjugate chemistry
container_volume 31
creator Rees, Kelly
Tran, Michael V
Massey, Melissa
Kim, Hyungki
Krause, Katherine D
Algar, W. Russ
description The prerequisites for maximizing the advantageous optical properties of colloidal semiconductor quantum dots (QDs) in biological applications are effective surface functionalization and bioconjugation strategies. Functionalization with dextran has been highly successful with some nanoparticle materials, but has had very limited application with QDs. Here, we report the preparation, characterization, and proof-of-concept applications of dextran-functionalized QDs. Multiple approaches to dextran ligands were evaluated, including performance with respect to colloidal stability across a range of pH, nonspecific binding with proteins and cells, and microinjection into cells and viability assays. Multiple bioconjugation strategies were demonstrated and applied, including covalent coupling to develop a simple pH sensor, binding of polyhistidine-tagged peptides to the QD for energy transfer-based proteolytic activity assays, and binding with tetrameric antibody complexes (TACs) to enable a sandwich immunoassay and cell immunolabeling and imaging. Our results show that dextran ligands are highly promising for the functionalization of QDs, and that the design of the ligands is tailorable to help optimally meet the requirements of applications.
doi_str_mv 10.1021/acs.bioconjchem.0c00019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2391215398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2391215398</sourcerecordid><originalsourceid>FETCH-LOGICAL-a385t-9d478c739500ae01b55d3f85164fbdcc018102e14bb44f2fd7a7e9821f400a213</originalsourceid><addsrcrecordid>eNqFkMtOwzAURC0EouXxCxCJdYqv7RBnCS2FSpUQAjZsLMePkqqJi51IlK_HVUrFjpUt35lzx4PQJeARYALXUoVRWTnlmqX6MPUIK4wxFAdoCBnBKeNADuMdM5oCx2SATkJYRkkBnByjASWYU57BEL1PzFfrZZNOu0a1lWvkqvo2OnkxdRXpulOt88lzJ5u2q5OJa5O7fm23kK0JiY3T-CKjbxOqkMhGJ7NaLqpmcYaOrFwFc747T9Hb9P51_JjOnx5m49t5KmOENi00y7nKaZFhLA2GMss0tTHcDbOlVgoDj182wMqSMUuszmVuCk7AsmggQE_RVc9de_fZmdCKpet8DBQEoQUQyGjBoyrvVcq7ELyxYu2rWvqNACy2nYrYqfjTqdh1Gp0XO35X1kbvfb8lRgHtBVvCfvd_2B-K3IkT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391215398</pqid></control><display><type>article</type><title>Dextran-Functionalized Semiconductor Quantum Dot Bioconjugates for Bioanalysis and Imaging</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Rees, Kelly ; Tran, Michael V ; Massey, Melissa ; Kim, Hyungki ; Krause, Katherine D ; Algar, W. Russ</creator><creatorcontrib>Rees, Kelly ; Tran, Michael V ; Massey, Melissa ; Kim, Hyungki ; Krause, Katherine D ; Algar, W. Russ</creatorcontrib><description>The prerequisites for maximizing the advantageous optical properties of colloidal semiconductor quantum dots (QDs) in biological applications are effective surface functionalization and bioconjugation strategies. Functionalization with dextran has been highly successful with some nanoparticle materials, but has had very limited application with QDs. Here, we report the preparation, characterization, and proof-of-concept applications of dextran-functionalized QDs. Multiple approaches to dextran ligands were evaluated, including performance with respect to colloidal stability across a range of pH, nonspecific binding with proteins and cells, and microinjection into cells and viability assays. Multiple bioconjugation strategies were demonstrated and applied, including covalent coupling to develop a simple pH sensor, binding of polyhistidine-tagged peptides to the QD for energy transfer-based proteolytic activity assays, and binding with tetrameric antibody complexes (TACs) to enable a sandwich immunoassay and cell immunolabeling and imaging. Our results show that dextran ligands are highly promising for the functionalization of QDs, and that the design of the ligands is tailorable to help optimally meet the requirements of applications.</description><identifier>ISSN: 1043-1802</identifier><identifier>EISSN: 1520-4812</identifier><identifier>DOI: 10.1021/acs.bioconjchem.0c00019</identifier><identifier>PMID: 32083851</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>A549 Cells ; Antibodies ; Binding ; Biological effects ; Dextran ; Dextrans - chemistry ; Electrophoresis ; Energy transfer ; Humans ; Immunoassay ; Ligands ; Microinjection ; Molecular Imaging - methods ; Nanoparticles ; Optical Phenomena ; Optical properties ; Optimization ; Peptides ; pH effects ; pH sensors ; Polyhistidine ; Proteolysis ; Quantum dots ; Quantum Dots - chemistry ; Quantum Dots - metabolism ; Semiconductors ; Stability analysis ; Staining and Labeling ; Surface Properties</subject><ispartof>Bioconjugate chemistry, 2020-03, Vol.31 (3), p.861-874</ispartof><rights>Copyright American Chemical Society Mar 18, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a385t-9d478c739500ae01b55d3f85164fbdcc018102e14bb44f2fd7a7e9821f400a213</citedby><cites>FETCH-LOGICAL-a385t-9d478c739500ae01b55d3f85164fbdcc018102e14bb44f2fd7a7e9821f400a213</cites><orcidid>0000-0003-3442-7072</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.bioconjchem.0c00019$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.bioconjchem.0c00019$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32083851$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rees, Kelly</creatorcontrib><creatorcontrib>Tran, Michael V</creatorcontrib><creatorcontrib>Massey, Melissa</creatorcontrib><creatorcontrib>Kim, Hyungki</creatorcontrib><creatorcontrib>Krause, Katherine D</creatorcontrib><creatorcontrib>Algar, W. Russ</creatorcontrib><title>Dextran-Functionalized Semiconductor Quantum Dot Bioconjugates for Bioanalysis and Imaging</title><title>Bioconjugate chemistry</title><addtitle>Bioconjugate Chem</addtitle><description>The prerequisites for maximizing the advantageous optical properties of colloidal semiconductor quantum dots (QDs) in biological applications are effective surface functionalization and bioconjugation strategies. Functionalization with dextran has been highly successful with some nanoparticle materials, but has had very limited application with QDs. Here, we report the preparation, characterization, and proof-of-concept applications of dextran-functionalized QDs. Multiple approaches to dextran ligands were evaluated, including performance with respect to colloidal stability across a range of pH, nonspecific binding with proteins and cells, and microinjection into cells and viability assays. Multiple bioconjugation strategies were demonstrated and applied, including covalent coupling to develop a simple pH sensor, binding of polyhistidine-tagged peptides to the QD for energy transfer-based proteolytic activity assays, and binding with tetrameric antibody complexes (TACs) to enable a sandwich immunoassay and cell immunolabeling and imaging. Our results show that dextran ligands are highly promising for the functionalization of QDs, and that the design of the ligands is tailorable to help optimally meet the requirements of applications.</description><subject>A549 Cells</subject><subject>Antibodies</subject><subject>Binding</subject><subject>Biological effects</subject><subject>Dextran</subject><subject>Dextrans - chemistry</subject><subject>Electrophoresis</subject><subject>Energy transfer</subject><subject>Humans</subject><subject>Immunoassay</subject><subject>Ligands</subject><subject>Microinjection</subject><subject>Molecular Imaging - methods</subject><subject>Nanoparticles</subject><subject>Optical Phenomena</subject><subject>Optical properties</subject><subject>Optimization</subject><subject>Peptides</subject><subject>pH effects</subject><subject>pH sensors</subject><subject>Polyhistidine</subject><subject>Proteolysis</subject><subject>Quantum dots</subject><subject>Quantum Dots - chemistry</subject><subject>Quantum Dots - metabolism</subject><subject>Semiconductors</subject><subject>Stability analysis</subject><subject>Staining and Labeling</subject><subject>Surface Properties</subject><issn>1043-1802</issn><issn>1520-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOwzAURC0EouXxCxCJdYqv7RBnCS2FSpUQAjZsLMePkqqJi51IlK_HVUrFjpUt35lzx4PQJeARYALXUoVRWTnlmqX6MPUIK4wxFAdoCBnBKeNADuMdM5oCx2SATkJYRkkBnByjASWYU57BEL1PzFfrZZNOu0a1lWvkqvo2OnkxdRXpulOt88lzJ5u2q5OJa5O7fm23kK0JiY3T-CKjbxOqkMhGJ7NaLqpmcYaOrFwFc747T9Hb9P51_JjOnx5m49t5KmOENi00y7nKaZFhLA2GMss0tTHcDbOlVgoDj182wMqSMUuszmVuCk7AsmggQE_RVc9de_fZmdCKpet8DBQEoQUQyGjBoyrvVcq7ELyxYu2rWvqNACy2nYrYqfjTqdh1Gp0XO35X1kbvfb8lRgHtBVvCfvd_2B-K3IkT</recordid><startdate>20200318</startdate><enddate>20200318</enddate><creator>Rees, Kelly</creator><creator>Tran, Michael V</creator><creator>Massey, Melissa</creator><creator>Kim, Hyungki</creator><creator>Krause, Katherine D</creator><creator>Algar, W. Russ</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-3442-7072</orcidid></search><sort><creationdate>20200318</creationdate><title>Dextran-Functionalized Semiconductor Quantum Dot Bioconjugates for Bioanalysis and Imaging</title><author>Rees, Kelly ; Tran, Michael V ; Massey, Melissa ; Kim, Hyungki ; Krause, Katherine D ; Algar, W. Russ</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a385t-9d478c739500ae01b55d3f85164fbdcc018102e14bb44f2fd7a7e9821f400a213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>A549 Cells</topic><topic>Antibodies</topic><topic>Binding</topic><topic>Biological effects</topic><topic>Dextran</topic><topic>Dextrans - chemistry</topic><topic>Electrophoresis</topic><topic>Energy transfer</topic><topic>Humans</topic><topic>Immunoassay</topic><topic>Ligands</topic><topic>Microinjection</topic><topic>Molecular Imaging - methods</topic><topic>Nanoparticles</topic><topic>Optical Phenomena</topic><topic>Optical properties</topic><topic>Optimization</topic><topic>Peptides</topic><topic>pH effects</topic><topic>pH sensors</topic><topic>Polyhistidine</topic><topic>Proteolysis</topic><topic>Quantum dots</topic><topic>Quantum Dots - chemistry</topic><topic>Quantum Dots - metabolism</topic><topic>Semiconductors</topic><topic>Stability analysis</topic><topic>Staining and Labeling</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rees, Kelly</creatorcontrib><creatorcontrib>Tran, Michael V</creatorcontrib><creatorcontrib>Massey, Melissa</creatorcontrib><creatorcontrib>Kim, Hyungki</creatorcontrib><creatorcontrib>Krause, Katherine D</creatorcontrib><creatorcontrib>Algar, W. Russ</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Bioconjugate chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rees, Kelly</au><au>Tran, Michael V</au><au>Massey, Melissa</au><au>Kim, Hyungki</au><au>Krause, Katherine D</au><au>Algar, W. Russ</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dextran-Functionalized Semiconductor Quantum Dot Bioconjugates for Bioanalysis and Imaging</atitle><jtitle>Bioconjugate chemistry</jtitle><addtitle>Bioconjugate Chem</addtitle><date>2020-03-18</date><risdate>2020</risdate><volume>31</volume><issue>3</issue><spage>861</spage><epage>874</epage><pages>861-874</pages><issn>1043-1802</issn><eissn>1520-4812</eissn><abstract>The prerequisites for maximizing the advantageous optical properties of colloidal semiconductor quantum dots (QDs) in biological applications are effective surface functionalization and bioconjugation strategies. Functionalization with dextran has been highly successful with some nanoparticle materials, but has had very limited application with QDs. Here, we report the preparation, characterization, and proof-of-concept applications of dextran-functionalized QDs. Multiple approaches to dextran ligands were evaluated, including performance with respect to colloidal stability across a range of pH, nonspecific binding with proteins and cells, and microinjection into cells and viability assays. Multiple bioconjugation strategies were demonstrated and applied, including covalent coupling to develop a simple pH sensor, binding of polyhistidine-tagged peptides to the QD for energy transfer-based proteolytic activity assays, and binding with tetrameric antibody complexes (TACs) to enable a sandwich immunoassay and cell immunolabeling and imaging. Our results show that dextran ligands are highly promising for the functionalization of QDs, and that the design of the ligands is tailorable to help optimally meet the requirements of applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32083851</pmid><doi>10.1021/acs.bioconjchem.0c00019</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3442-7072</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1043-1802
ispartof Bioconjugate chemistry, 2020-03, Vol.31 (3), p.861-874
issn 1043-1802
1520-4812
language eng
recordid cdi_proquest_journals_2391215398
source MEDLINE; American Chemical Society Journals
subjects A549 Cells
Antibodies
Binding
Biological effects
Dextran
Dextrans - chemistry
Electrophoresis
Energy transfer
Humans
Immunoassay
Ligands
Microinjection
Molecular Imaging - methods
Nanoparticles
Optical Phenomena
Optical properties
Optimization
Peptides
pH effects
pH sensors
Polyhistidine
Proteolysis
Quantum dots
Quantum Dots - chemistry
Quantum Dots - metabolism
Semiconductors
Stability analysis
Staining and Labeling
Surface Properties
title Dextran-Functionalized Semiconductor Quantum Dot Bioconjugates for Bioanalysis and Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A31%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dextran-Functionalized%20Semiconductor%20Quantum%20Dot%20Bioconjugates%20for%20Bioanalysis%20and%20Imaging&rft.jtitle=Bioconjugate%20chemistry&rft.au=Rees,%20Kelly&rft.date=2020-03-18&rft.volume=31&rft.issue=3&rft.spage=861&rft.epage=874&rft.pages=861-874&rft.issn=1043-1802&rft.eissn=1520-4812&rft_id=info:doi/10.1021/acs.bioconjchem.0c00019&rft_dat=%3Cproquest_cross%3E2391215398%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2391215398&rft_id=info:pmid/32083851&rfr_iscdi=true