Parallel simulation of the synchronization of heterogeneous cells in the sinoatrial node
Summary The cells of the sinoatrial node (SAN) are self‐excitable entities that show a coupled electrical pattern that consists of the synchronized activation of action potentials that determine the heart rate. To accurately describe the behavior of cell membrane proteins, theoretical biophysicists...
Gespeichert in:
Veröffentlicht in: | Concurrency and computation 2020-05, Vol.32 (10), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Concurrency and computation |
container_volume | 32 |
creator | Nicolás Mata, Aurelio Román Alonso, Graciela López Garza, Gabriel Godinez Fernández, José Rafael Castro García, Miguel Alfonso Castellanos Ábrego, Norma Pilar |
description | Summary
The cells of the sinoatrial node (SAN) are self‐excitable entities that show a coupled electrical pattern that consists of the synchronized activation of action potentials that determine the heart rate. To accurately describe the behavior of cell membrane proteins, theoretical biophysicists have devoted themselves to the study of the electrical activity of individual cells, which involves solving a large number of coupled differential equations. This computational limitation makes the modeling of a large number of cells unattainable, since the intracellular distribution of Ca2+ must be considered and this fact increases in grand extent the number of differential equations involved. In this work, we explore different parallel architectures (using OpenMP, MPI, and CUDA libraries) to show advances in the computational modeling and simulation of the SAN using a multicellular array in which the cells are endowed of heterogeneous conductances and are electrically coupled, considering a variable connectivity among them. |
doi_str_mv | 10.1002/cpe.5317 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2391156070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2391156070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2937-3abad779edd6cc976df90c51cc21bc03f20e232bf56e625461640c87aff9e5593</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgCtYq-BMCXrxszUeTNUcp9QMEe1DwFtLsxKakSU12kfrr3brSm6cZhod34EXokpIJJYTd2C1MBKf1ERpRwVlFJJ8eH3YmT9FZKWtCKCWcjtD7wmQTAgRc_KYLpvUp4uRwuwJcdtGucor--3BeQQs5fUCE1BVsIYSCfRy0j8m02ZuAY2rgHJ04Ewpc_M0xerufv84eq-eXh6fZ3XNlmeJ1xc3SNHWtoGmktaqWjVPECmoto0tLuGMEGGdLJyRIJqaSyimxt7VxToEQio_R1ZC7zemzg9Lqdepy7F9qxhWlQpKa9Op6UDanUjI4vc1-Y_JOU6L3vem-N73vrafVQL98gN2_Ts8W81__A8Hqb2k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391156070</pqid></control><display><type>article</type><title>Parallel simulation of the synchronization of heterogeneous cells in the sinoatrial node</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Nicolás Mata, Aurelio ; Román Alonso, Graciela ; López Garza, Gabriel ; Godinez Fernández, José Rafael ; Castro García, Miguel Alfonso ; Castellanos Ábrego, Norma Pilar</creator><creatorcontrib>Nicolás Mata, Aurelio ; Román Alonso, Graciela ; López Garza, Gabriel ; Godinez Fernández, José Rafael ; Castro García, Miguel Alfonso ; Castellanos Ábrego, Norma Pilar</creatorcontrib><description>Summary
The cells of the sinoatrial node (SAN) are self‐excitable entities that show a coupled electrical pattern that consists of the synchronized activation of action potentials that determine the heart rate. To accurately describe the behavior of cell membrane proteins, theoretical biophysicists have devoted themselves to the study of the electrical activity of individual cells, which involves solving a large number of coupled differential equations. This computational limitation makes the modeling of a large number of cells unattainable, since the intracellular distribution of Ca2+ must be considered and this fact increases in grand extent the number of differential equations involved. In this work, we explore different parallel architectures (using OpenMP, MPI, and CUDA libraries) to show advances in the computational modeling and simulation of the SAN using a multicellular array in which the cells are endowed of heterogeneous conductances and are electrically coupled, considering a variable connectivity among them.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.5317</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Calcium ions ; Cell membranes ; Computer simulation ; CUDA programming ; Differential equations ; Heart rate ; HPC application ; Mathematical models ; MPI ; OpenMP ; sinoatrial node synchronization ; Synchronism</subject><ispartof>Concurrency and computation, 2020-05, Vol.32 (10), p.n/a</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><rights>2020 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2937-3abad779edd6cc976df90c51cc21bc03f20e232bf56e625461640c87aff9e5593</citedby><cites>FETCH-LOGICAL-c2937-3abad779edd6cc976df90c51cc21bc03f20e232bf56e625461640c87aff9e5593</cites><orcidid>0000-0002-0684-2562</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.5317$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.5317$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Nicolás Mata, Aurelio</creatorcontrib><creatorcontrib>Román Alonso, Graciela</creatorcontrib><creatorcontrib>López Garza, Gabriel</creatorcontrib><creatorcontrib>Godinez Fernández, José Rafael</creatorcontrib><creatorcontrib>Castro García, Miguel Alfonso</creatorcontrib><creatorcontrib>Castellanos Ábrego, Norma Pilar</creatorcontrib><title>Parallel simulation of the synchronization of heterogeneous cells in the sinoatrial node</title><title>Concurrency and computation</title><description>Summary
The cells of the sinoatrial node (SAN) are self‐excitable entities that show a coupled electrical pattern that consists of the synchronized activation of action potentials that determine the heart rate. To accurately describe the behavior of cell membrane proteins, theoretical biophysicists have devoted themselves to the study of the electrical activity of individual cells, which involves solving a large number of coupled differential equations. This computational limitation makes the modeling of a large number of cells unattainable, since the intracellular distribution of Ca2+ must be considered and this fact increases in grand extent the number of differential equations involved. In this work, we explore different parallel architectures (using OpenMP, MPI, and CUDA libraries) to show advances in the computational modeling and simulation of the SAN using a multicellular array in which the cells are endowed of heterogeneous conductances and are electrically coupled, considering a variable connectivity among them.</description><subject>Calcium ions</subject><subject>Cell membranes</subject><subject>Computer simulation</subject><subject>CUDA programming</subject><subject>Differential equations</subject><subject>Heart rate</subject><subject>HPC application</subject><subject>Mathematical models</subject><subject>MPI</subject><subject>OpenMP</subject><subject>sinoatrial node synchronization</subject><subject>Synchronism</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQBuAgCtYq-BMCXrxszUeTNUcp9QMEe1DwFtLsxKakSU12kfrr3brSm6cZhod34EXokpIJJYTd2C1MBKf1ERpRwVlFJJ8eH3YmT9FZKWtCKCWcjtD7wmQTAgRc_KYLpvUp4uRwuwJcdtGucor--3BeQQs5fUCE1BVsIYSCfRy0j8m02ZuAY2rgHJ04Ewpc_M0xerufv84eq-eXh6fZ3XNlmeJ1xc3SNHWtoGmktaqWjVPECmoto0tLuGMEGGdLJyRIJqaSyimxt7VxToEQio_R1ZC7zemzg9Lqdepy7F9qxhWlQpKa9Op6UDanUjI4vc1-Y_JOU6L3vem-N73vrafVQL98gN2_Ts8W81__A8Hqb2k</recordid><startdate>20200525</startdate><enddate>20200525</enddate><creator>Nicolás Mata, Aurelio</creator><creator>Román Alonso, Graciela</creator><creator>López Garza, Gabriel</creator><creator>Godinez Fernández, José Rafael</creator><creator>Castro García, Miguel Alfonso</creator><creator>Castellanos Ábrego, Norma Pilar</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0684-2562</orcidid></search><sort><creationdate>20200525</creationdate><title>Parallel simulation of the synchronization of heterogeneous cells in the sinoatrial node</title><author>Nicolás Mata, Aurelio ; Román Alonso, Graciela ; López Garza, Gabriel ; Godinez Fernández, José Rafael ; Castro García, Miguel Alfonso ; Castellanos Ábrego, Norma Pilar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2937-3abad779edd6cc976df90c51cc21bc03f20e232bf56e625461640c87aff9e5593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Calcium ions</topic><topic>Cell membranes</topic><topic>Computer simulation</topic><topic>CUDA programming</topic><topic>Differential equations</topic><topic>Heart rate</topic><topic>HPC application</topic><topic>Mathematical models</topic><topic>MPI</topic><topic>OpenMP</topic><topic>sinoatrial node synchronization</topic><topic>Synchronism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nicolás Mata, Aurelio</creatorcontrib><creatorcontrib>Román Alonso, Graciela</creatorcontrib><creatorcontrib>López Garza, Gabriel</creatorcontrib><creatorcontrib>Godinez Fernández, José Rafael</creatorcontrib><creatorcontrib>Castro García, Miguel Alfonso</creatorcontrib><creatorcontrib>Castellanos Ábrego, Norma Pilar</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nicolás Mata, Aurelio</au><au>Román Alonso, Graciela</au><au>López Garza, Gabriel</au><au>Godinez Fernández, José Rafael</au><au>Castro García, Miguel Alfonso</au><au>Castellanos Ábrego, Norma Pilar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel simulation of the synchronization of heterogeneous cells in the sinoatrial node</atitle><jtitle>Concurrency and computation</jtitle><date>2020-05-25</date><risdate>2020</risdate><volume>32</volume><issue>10</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Summary
The cells of the sinoatrial node (SAN) are self‐excitable entities that show a coupled electrical pattern that consists of the synchronized activation of action potentials that determine the heart rate. To accurately describe the behavior of cell membrane proteins, theoretical biophysicists have devoted themselves to the study of the electrical activity of individual cells, which involves solving a large number of coupled differential equations. This computational limitation makes the modeling of a large number of cells unattainable, since the intracellular distribution of Ca2+ must be considered and this fact increases in grand extent the number of differential equations involved. In this work, we explore different parallel architectures (using OpenMP, MPI, and CUDA libraries) to show advances in the computational modeling and simulation of the SAN using a multicellular array in which the cells are endowed of heterogeneous conductances and are electrically coupled, considering a variable connectivity among them.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cpe.5317</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0684-2562</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-0626 |
ispartof | Concurrency and computation, 2020-05, Vol.32 (10), p.n/a |
issn | 1532-0626 1532-0634 |
language | eng |
recordid | cdi_proquest_journals_2391156070 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Calcium ions Cell membranes Computer simulation CUDA programming Differential equations Heart rate HPC application Mathematical models MPI OpenMP sinoatrial node synchronization Synchronism |
title | Parallel simulation of the synchronization of heterogeneous cells in the sinoatrial node |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A09%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20simulation%20of%20the%20synchronization%20of%20heterogeneous%20cells%20in%20the%20sinoatrial%20node&rft.jtitle=Concurrency%20and%20computation&rft.au=Nicol%C3%A1s%20Mata,%20Aurelio&rft.date=2020-05-25&rft.volume=32&rft.issue=10&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.5317&rft_dat=%3Cproquest_cross%3E2391156070%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2391156070&rft_id=info:pmid/&rfr_iscdi=true |