Model-Based Probable Maximum Precipitation Estimation: How to Estimate the Worst-Case Scenario Induced by Atmospheric Rivers?

The concept of probable maximum precipitation (PMP) is widely used for the design and risk assessment of water resource infrastructure. Despite its importance, past attempts to estimate PMP have not investigated the realism of design maximum storms from a meteorological perspective. This study inves...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrometeorology 2019-12, Vol.20 (12), p.2383-2400
Hauptverfasser: Toride, Kinya, Iseri, Yoshihiko, Warner, Michael D., Frans, Chris D., Duren, Angela M., England, John F., Kavvas, M. Levent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2400
container_issue 12
container_start_page 2383
container_title Journal of hydrometeorology
container_volume 20
creator Toride, Kinya
Iseri, Yoshihiko
Warner, Michael D.
Frans, Chris D.
Duren, Angela M.
England, John F.
Kavvas, M. Levent
description The concept of probable maximum precipitation (PMP) is widely used for the design and risk assessment of water resource infrastructure. Despite its importance, past attempts to estimate PMP have not investigated the realism of design maximum storms from a meteorological perspective. This study investigates estimating PMP with realistically maximized storms in a Pacific Northwest region dominated by atmospheric rivers (ARs) using numerical weather models (NWMs). The moisture maximization and storm transposition methods used in NWM-based PMP estimates are examined. We use integrated water vapor transport as a criterion to modify water vapor only at the modeling boundary crossing the path of ARs, whereas existing methods maximize relative humidity at all initial/boundary conditions. It is found that saturation of the entire modeling boundaries can produce unrealistic atmospheric conditions and does not necessarily maximize precipitation over a watershed due to storm structure, stability, and topography. The proposed method creates more realistic atmospheric fields and more severe precipitation. The simultaneous optimization of moisture content and location of storms is also considered to rigorously estimate the most extreme precipitation. Among the 20 most severe storms during 1980–2016, the AR event during 5–9 February 1996 produces the largest 72-h basin-average precipitation when maximized with our method (defined as PMP of this study), in which precipitation is intensified by 1.9 times with a 0.7° shift south and a 30% increase in AR moisture. The 24-, 48-, and 72-h PMP estimates are found to be at least 70 mm lower than the Hydrometeorological Reports estimates regardless of duration.
doi_str_mv 10.1175/jhm-d-19-0039.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2390727067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26894456</jstor_id><sourcerecordid>26894456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-206658e2c44cc97fbdd9b7a5bdc96c06317d98b415cd67b0bc86ddba95db8e73</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKtnT0LBc9rMbj6PWqtVuuihB28hX8Vduk1NtmD_e7dWeprH8Hszj4fQLZAxgGCT5qvFHoPChJRqDGdoAKxgWDAK5yfNPi_RVc4NIYQqkAPEqujDGj-aHPzoI0Vr7DqMKvNTt7u2XwRXb-vOdHXcjGa5q9s_eY0uVmadw83_HKLl82w5nePF-8vr9GGBXalkhwvCOZOhcJQ6p8TKeq-sMMx6p7gjvAThlbQUmPNcWGKd5N5bo5i3MohyiO6PZ7cpfu9C7nQTd2nTf9RFqYgoBOEHanKkXIo5p7DS29TnTHsNRB-q0W_zSj9pUPpQjYbecXd0NLmL6YQXXCpKGS9_AcX7YPM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390727067</pqid></control><display><type>article</type><title>Model-Based Probable Maximum Precipitation Estimation: How to Estimate the Worst-Case Scenario Induced by Atmospheric Rivers?</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Toride, Kinya ; Iseri, Yoshihiko ; Warner, Michael D. ; Frans, Chris D. ; Duren, Angela M. ; England, John F. ; Kavvas, M. Levent</creator><creatorcontrib>Toride, Kinya ; Iseri, Yoshihiko ; Warner, Michael D. ; Frans, Chris D. ; Duren, Angela M. ; England, John F. ; Kavvas, M. Levent</creatorcontrib><description>The concept of probable maximum precipitation (PMP) is widely used for the design and risk assessment of water resource infrastructure. Despite its importance, past attempts to estimate PMP have not investigated the realism of design maximum storms from a meteorological perspective. This study investigates estimating PMP with realistically maximized storms in a Pacific Northwest region dominated by atmospheric rivers (ARs) using numerical weather models (NWMs). The moisture maximization and storm transposition methods used in NWM-based PMP estimates are examined. We use integrated water vapor transport as a criterion to modify water vapor only at the modeling boundary crossing the path of ARs, whereas existing methods maximize relative humidity at all initial/boundary conditions. It is found that saturation of the entire modeling boundaries can produce unrealistic atmospheric conditions and does not necessarily maximize precipitation over a watershed due to storm structure, stability, and topography. The proposed method creates more realistic atmospheric fields and more severe precipitation. The simultaneous optimization of moisture content and location of storms is also considered to rigorously estimate the most extreme precipitation. Among the 20 most severe storms during 1980–2016, the AR event during 5–9 February 1996 produces the largest 72-h basin-average precipitation when maximized with our method (defined as PMP of this study), in which precipitation is intensified by 1.9 times with a 0.7° shift south and a 30% increase in AR moisture. The 24-, 48-, and 72-h PMP estimates are found to be at least 70 mm lower than the Hydrometeorological Reports estimates regardless of duration.</description><identifier>ISSN: 1525-755X</identifier><identifier>EISSN: 1525-7541</identifier><identifier>DOI: 10.1175/jhm-d-19-0039.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Atmospheric conditions ; Atmospheric models ; Boundary conditions ; Estimates ; Extreme weather ; Hydrometeorology ; Maximum precipitation ; Methods ; Modelling ; Moisture content ; Optimization ; Precipitation ; Precipitation estimation ; Probable maximum precipitation ; Realism ; Relative humidity ; Risk assessment ; Saturation ; Severe storms ; Stability ; Statistical analysis ; Storm structure ; Storms ; Studies ; Transposition ; Water content ; Water resources ; Water vapor ; Water vapor transport ; Water vapour ; Watersheds ; Weather</subject><ispartof>Journal of hydrometeorology, 2019-12, Vol.20 (12), p.2383-2400</ispartof><rights>2019 American Meteorological Society</rights><rights>Copyright American Meteorological Society Dec 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-206658e2c44cc97fbdd9b7a5bdc96c06317d98b415cd67b0bc86ddba95db8e73</citedby><cites>FETCH-LOGICAL-c398t-206658e2c44cc97fbdd9b7a5bdc96c06317d98b415cd67b0bc86ddba95db8e73</cites><orcidid>0000-0002-5399-0103</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26894456$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26894456$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3668,27901,27902,57992,58225</link.rule.ids></links><search><creatorcontrib>Toride, Kinya</creatorcontrib><creatorcontrib>Iseri, Yoshihiko</creatorcontrib><creatorcontrib>Warner, Michael D.</creatorcontrib><creatorcontrib>Frans, Chris D.</creatorcontrib><creatorcontrib>Duren, Angela M.</creatorcontrib><creatorcontrib>England, John F.</creatorcontrib><creatorcontrib>Kavvas, M. Levent</creatorcontrib><title>Model-Based Probable Maximum Precipitation Estimation: How to Estimate the Worst-Case Scenario Induced by Atmospheric Rivers?</title><title>Journal of hydrometeorology</title><description>The concept of probable maximum precipitation (PMP) is widely used for the design and risk assessment of water resource infrastructure. Despite its importance, past attempts to estimate PMP have not investigated the realism of design maximum storms from a meteorological perspective. This study investigates estimating PMP with realistically maximized storms in a Pacific Northwest region dominated by atmospheric rivers (ARs) using numerical weather models (NWMs). The moisture maximization and storm transposition methods used in NWM-based PMP estimates are examined. We use integrated water vapor transport as a criterion to modify water vapor only at the modeling boundary crossing the path of ARs, whereas existing methods maximize relative humidity at all initial/boundary conditions. It is found that saturation of the entire modeling boundaries can produce unrealistic atmospheric conditions and does not necessarily maximize precipitation over a watershed due to storm structure, stability, and topography. The proposed method creates more realistic atmospheric fields and more severe precipitation. The simultaneous optimization of moisture content and location of storms is also considered to rigorously estimate the most extreme precipitation. Among the 20 most severe storms during 1980–2016, the AR event during 5–9 February 1996 produces the largest 72-h basin-average precipitation when maximized with our method (defined as PMP of this study), in which precipitation is intensified by 1.9 times with a 0.7° shift south and a 30% increase in AR moisture. The 24-, 48-, and 72-h PMP estimates are found to be at least 70 mm lower than the Hydrometeorological Reports estimates regardless of duration.</description><subject>Atmospheric conditions</subject><subject>Atmospheric models</subject><subject>Boundary conditions</subject><subject>Estimates</subject><subject>Extreme weather</subject><subject>Hydrometeorology</subject><subject>Maximum precipitation</subject><subject>Methods</subject><subject>Modelling</subject><subject>Moisture content</subject><subject>Optimization</subject><subject>Precipitation</subject><subject>Precipitation estimation</subject><subject>Probable maximum precipitation</subject><subject>Realism</subject><subject>Relative humidity</subject><subject>Risk assessment</subject><subject>Saturation</subject><subject>Severe storms</subject><subject>Stability</subject><subject>Statistical analysis</subject><subject>Storm structure</subject><subject>Storms</subject><subject>Studies</subject><subject>Transposition</subject><subject>Water content</subject><subject>Water resources</subject><subject>Water vapor</subject><subject>Water vapor transport</subject><subject>Water vapour</subject><subject>Watersheds</subject><subject>Weather</subject><issn>1525-755X</issn><issn>1525-7541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNo9kM1LAzEQxYMoWKtnT0LBc9rMbj6PWqtVuuihB28hX8Vduk1NtmD_e7dWeprH8Hszj4fQLZAxgGCT5qvFHoPChJRqDGdoAKxgWDAK5yfNPi_RVc4NIYQqkAPEqujDGj-aHPzoI0Vr7DqMKvNTt7u2XwRXb-vOdHXcjGa5q9s_eY0uVmadw83_HKLl82w5nePF-8vr9GGBXalkhwvCOZOhcJQ6p8TKeq-sMMx6p7gjvAThlbQUmPNcWGKd5N5bo5i3MohyiO6PZ7cpfu9C7nQTd2nTf9RFqYgoBOEHanKkXIo5p7DS29TnTHsNRB-q0W_zSj9pUPpQjYbecXd0NLmL6YQXXCpKGS9_AcX7YPM</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Toride, Kinya</creator><creator>Iseri, Yoshihiko</creator><creator>Warner, Michael D.</creator><creator>Frans, Chris D.</creator><creator>Duren, Angela M.</creator><creator>England, John F.</creator><creator>Kavvas, M. Levent</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-5399-0103</orcidid></search><sort><creationdate>20191201</creationdate><title>Model-Based Probable Maximum Precipitation Estimation</title><author>Toride, Kinya ; Iseri, Yoshihiko ; Warner, Michael D. ; Frans, Chris D. ; Duren, Angela M. ; England, John F. ; Kavvas, M. Levent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-206658e2c44cc97fbdd9b7a5bdc96c06317d98b415cd67b0bc86ddba95db8e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atmospheric conditions</topic><topic>Atmospheric models</topic><topic>Boundary conditions</topic><topic>Estimates</topic><topic>Extreme weather</topic><topic>Hydrometeorology</topic><topic>Maximum precipitation</topic><topic>Methods</topic><topic>Modelling</topic><topic>Moisture content</topic><topic>Optimization</topic><topic>Precipitation</topic><topic>Precipitation estimation</topic><topic>Probable maximum precipitation</topic><topic>Realism</topic><topic>Relative humidity</topic><topic>Risk assessment</topic><topic>Saturation</topic><topic>Severe storms</topic><topic>Stability</topic><topic>Statistical analysis</topic><topic>Storm structure</topic><topic>Storms</topic><topic>Studies</topic><topic>Transposition</topic><topic>Water content</topic><topic>Water resources</topic><topic>Water vapor</topic><topic>Water vapor transport</topic><topic>Water vapour</topic><topic>Watersheds</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toride, Kinya</creatorcontrib><creatorcontrib>Iseri, Yoshihiko</creatorcontrib><creatorcontrib>Warner, Michael D.</creatorcontrib><creatorcontrib>Frans, Chris D.</creatorcontrib><creatorcontrib>Duren, Angela M.</creatorcontrib><creatorcontrib>England, John F.</creatorcontrib><creatorcontrib>Kavvas, M. Levent</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of hydrometeorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toride, Kinya</au><au>Iseri, Yoshihiko</au><au>Warner, Michael D.</au><au>Frans, Chris D.</au><au>Duren, Angela M.</au><au>England, John F.</au><au>Kavvas, M. Levent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-Based Probable Maximum Precipitation Estimation: How to Estimate the Worst-Case Scenario Induced by Atmospheric Rivers?</atitle><jtitle>Journal of hydrometeorology</jtitle><date>2019-12-01</date><risdate>2019</risdate><volume>20</volume><issue>12</issue><spage>2383</spage><epage>2400</epage><pages>2383-2400</pages><issn>1525-755X</issn><eissn>1525-7541</eissn><abstract>The concept of probable maximum precipitation (PMP) is widely used for the design and risk assessment of water resource infrastructure. Despite its importance, past attempts to estimate PMP have not investigated the realism of design maximum storms from a meteorological perspective. This study investigates estimating PMP with realistically maximized storms in a Pacific Northwest region dominated by atmospheric rivers (ARs) using numerical weather models (NWMs). The moisture maximization and storm transposition methods used in NWM-based PMP estimates are examined. We use integrated water vapor transport as a criterion to modify water vapor only at the modeling boundary crossing the path of ARs, whereas existing methods maximize relative humidity at all initial/boundary conditions. It is found that saturation of the entire modeling boundaries can produce unrealistic atmospheric conditions and does not necessarily maximize precipitation over a watershed due to storm structure, stability, and topography. The proposed method creates more realistic atmospheric fields and more severe precipitation. The simultaneous optimization of moisture content and location of storms is also considered to rigorously estimate the most extreme precipitation. Among the 20 most severe storms during 1980–2016, the AR event during 5–9 February 1996 produces the largest 72-h basin-average precipitation when maximized with our method (defined as PMP of this study), in which precipitation is intensified by 1.9 times with a 0.7° shift south and a 30% increase in AR moisture. The 24-, 48-, and 72-h PMP estimates are found to be at least 70 mm lower than the Hydrometeorological Reports estimates regardless of duration.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/jhm-d-19-0039.1</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5399-0103</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-755X
ispartof Journal of hydrometeorology, 2019-12, Vol.20 (12), p.2383-2400
issn 1525-755X
1525-7541
language eng
recordid cdi_proquest_journals_2390727067
source Jstor Complete Legacy; American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Atmospheric conditions
Atmospheric models
Boundary conditions
Estimates
Extreme weather
Hydrometeorology
Maximum precipitation
Methods
Modelling
Moisture content
Optimization
Precipitation
Precipitation estimation
Probable maximum precipitation
Realism
Relative humidity
Risk assessment
Saturation
Severe storms
Stability
Statistical analysis
Storm structure
Storms
Studies
Transposition
Water content
Water resources
Water vapor
Water vapor transport
Water vapour
Watersheds
Weather
title Model-Based Probable Maximum Precipitation Estimation: How to Estimate the Worst-Case Scenario Induced by Atmospheric Rivers?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A59%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-Based%20Probable%20Maximum%20Precipitation%20Estimation:%20How%20to%20Estimate%20the%20Worst-Case%20Scenario%20Induced%20by%20Atmospheric%20Rivers?&rft.jtitle=Journal%20of%20hydrometeorology&rft.au=Toride,%20Kinya&rft.date=2019-12-01&rft.volume=20&rft.issue=12&rft.spage=2383&rft.epage=2400&rft.pages=2383-2400&rft.issn=1525-755X&rft.eissn=1525-7541&rft_id=info:doi/10.1175/jhm-d-19-0039.1&rft_dat=%3Cjstor_proqu%3E26894456%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390727067&rft_id=info:pmid/&rft_jstor_id=26894456&rfr_iscdi=true