Improving user specifications for robot behavior through active preference learning: Framework and evaluation

An important challenge in human–robot interaction (HRI) is enabling non-expert users to specify complex tasks for autonomous robots. Recently, active preference learning has been applied in HRI to interactively shape a robot’s behavior. We study a framework where users specify constraints on allowab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The International journal of robotics research 2020-05, Vol.39 (6), p.651-667
Hauptverfasser: Wilde, Nils, Blidaru, Alexandru, Smith, Stephen L, Kulić, Dana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 667
container_issue 6
container_start_page 651
container_title The International journal of robotics research
container_volume 39
creator Wilde, Nils
Blidaru, Alexandru
Smith, Stephen L
Kulić, Dana
description An important challenge in human–robot interaction (HRI) is enabling non-expert users to specify complex tasks for autonomous robots. Recently, active preference learning has been applied in HRI to interactively shape a robot’s behavior. We study a framework where users specify constraints on allowable robot movements on a graphical interface, yielding a robot task specification. However, users may not be able to accurately assess the impact of such constraints on the performance of a robot. Thus, we revise the specification by iteratively presenting users with alternative solutions where some constraints might be violated, and learn about the importance of the constraints from the users’ choices between these alternatives. We demonstrate our framework in a user study with a material transport task in an industrial facility. We show that nearly all users accept alternative solutions and thus obtain a revised specification through the learning process, and that the revision leads to a substantial improvement in robot performance. Further, the learning process reduces the variances between the specifications from different users and, thus, makes the specifications more similar. As a result, the users whose initial specifications had the largest impact on performance benefit the most from the interactive learning.
doi_str_mv 10.1177/0278364920910802
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2390503474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0278364920910802</sage_id><sourcerecordid>2390503474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-19f53938f7b5e42f17f2fb620a500b5af2e636f82981dc3e27fadcc9b8e5dbfb3</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMouK7ePQY8VydJ2zTeZHFVWPCi55Kkk92u26YmbcV_b9cVBMHTMLz3vmEeIZcMrhmT8ga4LESeKg6KQQH8iMyYTFkimMyPyWwvJ3v9lJzFuAUAkYOakeap6YIf63ZNh4iBxg5t7Wqr-9q3kTofaPDG99TgRo_1tPab4If1hmrb1yPSLqDDgK1FukMd2ol0S5dBN_jhwxvVbUVx1LvhG3hOTpzeRbz4mXPyurx_WTwmq-eHp8XdKrECVJ8w5TKhROGkyTDljknHnck56AzAZNpxzEXuCq4KVlmBXDpdWatMgVllnBFzcnXgTr-9Dxj7cuuH0E4nSy4UZCBSmU4uOLhs8DFOf5RdqBsdPksG5b7U8m-pUyQ5RKJe4y_0X_8X2F55Gw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390503474</pqid></control><display><type>article</type><title>Improving user specifications for robot behavior through active preference learning: Framework and evaluation</title><source>SAGE Complete A-Z List</source><creator>Wilde, Nils ; Blidaru, Alexandru ; Smith, Stephen L ; Kulić, Dana</creator><creatorcontrib>Wilde, Nils ; Blidaru, Alexandru ; Smith, Stephen L ; Kulić, Dana</creatorcontrib><description>An important challenge in human–robot interaction (HRI) is enabling non-expert users to specify complex tasks for autonomous robots. Recently, active preference learning has been applied in HRI to interactively shape a robot’s behavior. We study a framework where users specify constraints on allowable robot movements on a graphical interface, yielding a robot task specification. However, users may not be able to accurately assess the impact of such constraints on the performance of a robot. Thus, we revise the specification by iteratively presenting users with alternative solutions where some constraints might be violated, and learn about the importance of the constraints from the users’ choices between these alternatives. We demonstrate our framework in a user study with a material transport task in an industrial facility. We show that nearly all users accept alternative solutions and thus obtain a revised specification through the learning process, and that the revision leads to a substantial improvement in robot performance. Further, the learning process reduces the variances between the specifications from different users and, thus, makes the specifications more similar. As a result, the users whose initial specifications had the largest impact on performance benefit the most from the interactive learning.</description><identifier>ISSN: 0278-3649</identifier><identifier>EISSN: 1741-3176</identifier><identifier>DOI: 10.1177/0278364920910802</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Initial specifications ; Interactive learning ; Learning ; Robots ; Task complexity</subject><ispartof>The International journal of robotics research, 2020-05, Vol.39 (6), p.651-667</ispartof><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-19f53938f7b5e42f17f2fb620a500b5af2e636f82981dc3e27fadcc9b8e5dbfb3</citedby><cites>FETCH-LOGICAL-c309t-19f53938f7b5e42f17f2fb620a500b5af2e636f82981dc3e27fadcc9b8e5dbfb3</cites><orcidid>0000-0003-3238-8153</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0278364920910802$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0278364920910802$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Wilde, Nils</creatorcontrib><creatorcontrib>Blidaru, Alexandru</creatorcontrib><creatorcontrib>Smith, Stephen L</creatorcontrib><creatorcontrib>Kulić, Dana</creatorcontrib><title>Improving user specifications for robot behavior through active preference learning: Framework and evaluation</title><title>The International journal of robotics research</title><description>An important challenge in human–robot interaction (HRI) is enabling non-expert users to specify complex tasks for autonomous robots. Recently, active preference learning has been applied in HRI to interactively shape a robot’s behavior. We study a framework where users specify constraints on allowable robot movements on a graphical interface, yielding a robot task specification. However, users may not be able to accurately assess the impact of such constraints on the performance of a robot. Thus, we revise the specification by iteratively presenting users with alternative solutions where some constraints might be violated, and learn about the importance of the constraints from the users’ choices between these alternatives. We demonstrate our framework in a user study with a material transport task in an industrial facility. We show that nearly all users accept alternative solutions and thus obtain a revised specification through the learning process, and that the revision leads to a substantial improvement in robot performance. Further, the learning process reduces the variances between the specifications from different users and, thus, makes the specifications more similar. As a result, the users whose initial specifications had the largest impact on performance benefit the most from the interactive learning.</description><subject>Initial specifications</subject><subject>Interactive learning</subject><subject>Learning</subject><subject>Robots</subject><subject>Task complexity</subject><issn>0278-3649</issn><issn>1741-3176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAQhYMouK7ePQY8VydJ2zTeZHFVWPCi55Kkk92u26YmbcV_b9cVBMHTMLz3vmEeIZcMrhmT8ga4LESeKg6KQQH8iMyYTFkimMyPyWwvJ3v9lJzFuAUAkYOakeap6YIf63ZNh4iBxg5t7Wqr-9q3kTofaPDG99TgRo_1tPab4If1hmrb1yPSLqDDgK1FukMd2ol0S5dBN_jhwxvVbUVx1LvhG3hOTpzeRbz4mXPyurx_WTwmq-eHp8XdKrECVJ8w5TKhROGkyTDljknHnck56AzAZNpxzEXuCq4KVlmBXDpdWatMgVllnBFzcnXgTr-9Dxj7cuuH0E4nSy4UZCBSmU4uOLhs8DFOf5RdqBsdPksG5b7U8m-pUyQ5RKJe4y_0X_8X2F55Gw</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Wilde, Nils</creator><creator>Blidaru, Alexandru</creator><creator>Smith, Stephen L</creator><creator>Kulić, Dana</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3238-8153</orcidid></search><sort><creationdate>202005</creationdate><title>Improving user specifications for robot behavior through active preference learning: Framework and evaluation</title><author>Wilde, Nils ; Blidaru, Alexandru ; Smith, Stephen L ; Kulić, Dana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-19f53938f7b5e42f17f2fb620a500b5af2e636f82981dc3e27fadcc9b8e5dbfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Initial specifications</topic><topic>Interactive learning</topic><topic>Learning</topic><topic>Robots</topic><topic>Task complexity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilde, Nils</creatorcontrib><creatorcontrib>Blidaru, Alexandru</creatorcontrib><creatorcontrib>Smith, Stephen L</creatorcontrib><creatorcontrib>Kulić, Dana</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The International journal of robotics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilde, Nils</au><au>Blidaru, Alexandru</au><au>Smith, Stephen L</au><au>Kulić, Dana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving user specifications for robot behavior through active preference learning: Framework and evaluation</atitle><jtitle>The International journal of robotics research</jtitle><date>2020-05</date><risdate>2020</risdate><volume>39</volume><issue>6</issue><spage>651</spage><epage>667</epage><pages>651-667</pages><issn>0278-3649</issn><eissn>1741-3176</eissn><abstract>An important challenge in human–robot interaction (HRI) is enabling non-expert users to specify complex tasks for autonomous robots. Recently, active preference learning has been applied in HRI to interactively shape a robot’s behavior. We study a framework where users specify constraints on allowable robot movements on a graphical interface, yielding a robot task specification. However, users may not be able to accurately assess the impact of such constraints on the performance of a robot. Thus, we revise the specification by iteratively presenting users with alternative solutions where some constraints might be violated, and learn about the importance of the constraints from the users’ choices between these alternatives. We demonstrate our framework in a user study with a material transport task in an industrial facility. We show that nearly all users accept alternative solutions and thus obtain a revised specification through the learning process, and that the revision leads to a substantial improvement in robot performance. Further, the learning process reduces the variances between the specifications from different users and, thus, makes the specifications more similar. As a result, the users whose initial specifications had the largest impact on performance benefit the most from the interactive learning.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0278364920910802</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-3238-8153</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0278-3649
ispartof The International journal of robotics research, 2020-05, Vol.39 (6), p.651-667
issn 0278-3649
1741-3176
language eng
recordid cdi_proquest_journals_2390503474
source SAGE Complete A-Z List
subjects Initial specifications
Interactive learning
Learning
Robots
Task complexity
title Improving user specifications for robot behavior through active preference learning: Framework and evaluation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A40%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20user%20specifications%20for%20robot%20behavior%20through%20active%20preference%20learning:%20Framework%20and%20evaluation&rft.jtitle=The%20International%20journal%20of%20robotics%20research&rft.au=Wilde,%20Nils&rft.date=2020-05&rft.volume=39&rft.issue=6&rft.spage=651&rft.epage=667&rft.pages=651-667&rft.issn=0278-3649&rft.eissn=1741-3176&rft_id=info:doi/10.1177/0278364920910802&rft_dat=%3Cproquest_cross%3E2390503474%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390503474&rft_id=info:pmid/&rft_sage_id=10.1177_0278364920910802&rfr_iscdi=true