Ferroelectric and dielectric properties of Ca2+-doped and Ca2+–Ti4+ co-doped K0.5Na0.5NbO3 thin films
Chemical solution deposition (CSD) of K0.5Na0.5NbO3 (KNN) thin films on silicon-based substrates is an interesting technology for fabrication of lead-free ferroelectric thin films. Here, we report on improved ferroelectric and dielectric properties of KNN thin films prepared by CSD through Ca2+-dopi...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2020-01, Vol.8 (15), p.5102-5111 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chemical solution deposition (CSD) of K0.5Na0.5NbO3 (KNN) thin films on silicon-based substrates is an interesting technology for fabrication of lead-free ferroelectric thin films. Here, we report on improved ferroelectric and dielectric properties of KNN thin films prepared by CSD through Ca2+-doping and Ca2+–Ti4+ (CaTiO3) co-doping. Undoped KNN, 0.5 mol% Ca2+-doped and 0.5 mol% CaTiO3-doped KNN films were deposited on platinized silicon substrates by aqueous CSD. X-ray diffraction of the films as well as powders, prepared from the precursor solutions, confirmed that the three KNN materials were single phase solid solutions. A smaller grain size was observed for the doped relative to undoped KNN films. In contrast to the pure KNN films, the Ca2+- and CaTiO3-doping was observed to promote ferroelectric switching, with a low leakage current and remnant polarization of 6.37 ± 0.47 and 7.40 ± 0.09 μC cm−2 of the Ca2+- and CaTiO3-doped films, respectively. The dielectric constants of the films were among the highest measured for KNN films from CSD and span from 1800 to 3200 at 1 kHz. |
---|---|
ISSN: | 2050-7526 2050-7534 |
DOI: | 10.1039/d0tc00276c |