Optical Metasurface‐Based Holographic Stereogram
Holographic stereography providing binocular depth cues is one of the most promising technologies for 3D displays. However, conventional holographic stereograms based on micrometer‐scale pixels suffer from multiple diffraction orders and narrow viewing angles. Optical metasurfaces with sub‐wavelengt...
Gespeichert in:
Veröffentlicht in: | Advanced optical materials 2020-04, Vol.8 (8), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Advanced optical materials |
container_volume | 8 |
creator | Choi, Yun‐Seok Lee, Shinho Jung, Joo‐Yun Jeong, Kwang‐Yong Park, Hong‐Gyu Seo, Min‐Kyo |
description | Holographic stereography providing binocular depth cues is one of the most promising technologies for 3D displays. However, conventional holographic stereograms based on micrometer‐scale pixels suffer from multiple diffraction orders and narrow viewing angles. Optical metasurfaces with sub‐wavelength‐scale features have recently been leading amongst the state‐of‐the‐art technologies in 3D holograms but employing only monocular depth cues. Here, a novel method is presented based on optical metasurfaces for obtaining a binocular holographic stereopsis. The demonstrated optical metasurface is an ensemble of several hologram pieces, which produce the different 2D projections of the target 3D structure depending on the observation direction, and displays the holographic stereogram of 25 × 25 × 25 µm3 over a wide viewing angle of more than ±30°. A Gerchberg–Saxton algorithm modified with a spatial Fourier filter calculates the phase and amplitude distribution of meta‐atoms. The results will open avenues to advanced eyeglasses‐free 3D displays that can provide rich and well‐defined depth cues.
The creation of binocular depth cues by optical metasurfaces is demonstrated. The metasurface consisting of hologram pieces, which produce the angle‐dependent 2D projections of the target 3D object without cross‐talk, displays the holographic stereogram of 25 × 25 × 25 µm3 over a viewing angle of >60°. The modified Gerchberg–Saxton algorithm employing the spatial Fourier filter allows to design the metasurface for holographic stereopsis. |
doi_str_mv | 10.1002/adom.201901970 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2390480218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2390480218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3570-3507376c60e9aae67b5241677fa5c42ded076d0a7331fa4a92f68e66891650633</originalsourceid><addsrcrecordid>eNqFkE9Lw0AQxRdRsNRePQc8p87uJrvZY61_KrT0oJ6XcTPRlNTE3QTpzY_gZ_STmFBRb8LAzIP35sGPsVMOUw4gzjGvt1MB3PSj4YCNBDdpzEHzwz_3MZuEsAGAXkiT6BET66YtHVbRiloMnS_Q0ef7xwUGyqNFXdVPHpvn0kV3LXka1PaEHRVYBZp87zF7uL66ny_i5frmdj5bxk6mGmKZ9h1aOQVkEEnpx1QkXGldYOoSkVMOWuWAWkpeYIJGFCojpTLDVQpKyjE72_9tfP3aUWjtpu78S19phTSQZCB41rume5fzdQieCtv4cot-ZznYAY0d0NgfNH3A7ANvZUW7f9x2drle_Wa_AJOQZnY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390480218</pqid></control><display><type>article</type><title>Optical Metasurface‐Based Holographic Stereogram</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Choi, Yun‐Seok ; Lee, Shinho ; Jung, Joo‐Yun ; Jeong, Kwang‐Yong ; Park, Hong‐Gyu ; Seo, Min‐Kyo</creator><creatorcontrib>Choi, Yun‐Seok ; Lee, Shinho ; Jung, Joo‐Yun ; Jeong, Kwang‐Yong ; Park, Hong‐Gyu ; Seo, Min‐Kyo</creatorcontrib><description>Holographic stereography providing binocular depth cues is one of the most promising technologies for 3D displays. However, conventional holographic stereograms based on micrometer‐scale pixels suffer from multiple diffraction orders and narrow viewing angles. Optical metasurfaces with sub‐wavelength‐scale features have recently been leading amongst the state‐of‐the‐art technologies in 3D holograms but employing only monocular depth cues. Here, a novel method is presented based on optical metasurfaces for obtaining a binocular holographic stereopsis. The demonstrated optical metasurface is an ensemble of several hologram pieces, which produce the different 2D projections of the target 3D structure depending on the observation direction, and displays the holographic stereogram of 25 × 25 × 25 µm3 over a wide viewing angle of more than ±30°. A Gerchberg–Saxton algorithm modified with a spatial Fourier filter calculates the phase and amplitude distribution of meta‐atoms. The results will open avenues to advanced eyeglasses‐free 3D displays that can provide rich and well‐defined depth cues.
The creation of binocular depth cues by optical metasurfaces is demonstrated. The metasurface consisting of hologram pieces, which produce the angle‐dependent 2D projections of the target 3D object without cross‐talk, displays the holographic stereogram of 25 × 25 × 25 µm3 over a viewing angle of >60°. The modified Gerchberg–Saxton algorithm employing the spatial Fourier filter allows to design the metasurface for holographic stereopsis.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.201901970</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; computer‐generated holograms ; Displays ; Eyewear ; Holograms ; holographic stereograms ; Holography ; Materials science ; Metasurfaces ; meta‐atoms ; optical metasurfaces ; Optics ; Stereograms ; Stereophotography ; Viewing</subject><ispartof>Advanced optical materials, 2020-04, Vol.8 (8), p.n/a</ispartof><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3570-3507376c60e9aae67b5241677fa5c42ded076d0a7331fa4a92f68e66891650633</citedby><cites>FETCH-LOGICAL-c3570-3507376c60e9aae67b5241677fa5c42ded076d0a7331fa4a92f68e66891650633</cites><orcidid>0000-0003-0618-3955</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.201901970$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.201901970$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Choi, Yun‐Seok</creatorcontrib><creatorcontrib>Lee, Shinho</creatorcontrib><creatorcontrib>Jung, Joo‐Yun</creatorcontrib><creatorcontrib>Jeong, Kwang‐Yong</creatorcontrib><creatorcontrib>Park, Hong‐Gyu</creatorcontrib><creatorcontrib>Seo, Min‐Kyo</creatorcontrib><title>Optical Metasurface‐Based Holographic Stereogram</title><title>Advanced optical materials</title><description>Holographic stereography providing binocular depth cues is one of the most promising technologies for 3D displays. However, conventional holographic stereograms based on micrometer‐scale pixels suffer from multiple diffraction orders and narrow viewing angles. Optical metasurfaces with sub‐wavelength‐scale features have recently been leading amongst the state‐of‐the‐art technologies in 3D holograms but employing only monocular depth cues. Here, a novel method is presented based on optical metasurfaces for obtaining a binocular holographic stereopsis. The demonstrated optical metasurface is an ensemble of several hologram pieces, which produce the different 2D projections of the target 3D structure depending on the observation direction, and displays the holographic stereogram of 25 × 25 × 25 µm3 over a wide viewing angle of more than ±30°. A Gerchberg–Saxton algorithm modified with a spatial Fourier filter calculates the phase and amplitude distribution of meta‐atoms. The results will open avenues to advanced eyeglasses‐free 3D displays that can provide rich and well‐defined depth cues.
The creation of binocular depth cues by optical metasurfaces is demonstrated. The metasurface consisting of hologram pieces, which produce the angle‐dependent 2D projections of the target 3D object without cross‐talk, displays the holographic stereogram of 25 × 25 × 25 µm3 over a viewing angle of >60°. The modified Gerchberg–Saxton algorithm employing the spatial Fourier filter allows to design the metasurface for holographic stereopsis.</description><subject>Algorithms</subject><subject>computer‐generated holograms</subject><subject>Displays</subject><subject>Eyewear</subject><subject>Holograms</subject><subject>holographic stereograms</subject><subject>Holography</subject><subject>Materials science</subject><subject>Metasurfaces</subject><subject>meta‐atoms</subject><subject>optical metasurfaces</subject><subject>Optics</subject><subject>Stereograms</subject><subject>Stereophotography</subject><subject>Viewing</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkE9Lw0AQxRdRsNRePQc8p87uJrvZY61_KrT0oJ6XcTPRlNTE3QTpzY_gZ_STmFBRb8LAzIP35sGPsVMOUw4gzjGvt1MB3PSj4YCNBDdpzEHzwz_3MZuEsAGAXkiT6BET66YtHVbRiloMnS_Q0ef7xwUGyqNFXdVPHpvn0kV3LXka1PaEHRVYBZp87zF7uL66ny_i5frmdj5bxk6mGmKZ9h1aOQVkEEnpx1QkXGldYOoSkVMOWuWAWkpeYIJGFCojpTLDVQpKyjE72_9tfP3aUWjtpu78S19phTSQZCB41rume5fzdQieCtv4cot-ZznYAY0d0NgfNH3A7ANvZUW7f9x2drle_Wa_AJOQZnY</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Choi, Yun‐Seok</creator><creator>Lee, Shinho</creator><creator>Jung, Joo‐Yun</creator><creator>Jeong, Kwang‐Yong</creator><creator>Park, Hong‐Gyu</creator><creator>Seo, Min‐Kyo</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0618-3955</orcidid></search><sort><creationdate>20200401</creationdate><title>Optical Metasurface‐Based Holographic Stereogram</title><author>Choi, Yun‐Seok ; Lee, Shinho ; Jung, Joo‐Yun ; Jeong, Kwang‐Yong ; Park, Hong‐Gyu ; Seo, Min‐Kyo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3570-3507376c60e9aae67b5241677fa5c42ded076d0a7331fa4a92f68e66891650633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>computer‐generated holograms</topic><topic>Displays</topic><topic>Eyewear</topic><topic>Holograms</topic><topic>holographic stereograms</topic><topic>Holography</topic><topic>Materials science</topic><topic>Metasurfaces</topic><topic>meta‐atoms</topic><topic>optical metasurfaces</topic><topic>Optics</topic><topic>Stereograms</topic><topic>Stereophotography</topic><topic>Viewing</topic><toplevel>online_resources</toplevel><creatorcontrib>Choi, Yun‐Seok</creatorcontrib><creatorcontrib>Lee, Shinho</creatorcontrib><creatorcontrib>Jung, Joo‐Yun</creatorcontrib><creatorcontrib>Jeong, Kwang‐Yong</creatorcontrib><creatorcontrib>Park, Hong‐Gyu</creatorcontrib><creatorcontrib>Seo, Min‐Kyo</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Yun‐Seok</au><au>Lee, Shinho</au><au>Jung, Joo‐Yun</au><au>Jeong, Kwang‐Yong</au><au>Park, Hong‐Gyu</au><au>Seo, Min‐Kyo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical Metasurface‐Based Holographic Stereogram</atitle><jtitle>Advanced optical materials</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>8</volume><issue>8</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Holographic stereography providing binocular depth cues is one of the most promising technologies for 3D displays. However, conventional holographic stereograms based on micrometer‐scale pixels suffer from multiple diffraction orders and narrow viewing angles. Optical metasurfaces with sub‐wavelength‐scale features have recently been leading amongst the state‐of‐the‐art technologies in 3D holograms but employing only monocular depth cues. Here, a novel method is presented based on optical metasurfaces for obtaining a binocular holographic stereopsis. The demonstrated optical metasurface is an ensemble of several hologram pieces, which produce the different 2D projections of the target 3D structure depending on the observation direction, and displays the holographic stereogram of 25 × 25 × 25 µm3 over a wide viewing angle of more than ±30°. A Gerchberg–Saxton algorithm modified with a spatial Fourier filter calculates the phase and amplitude distribution of meta‐atoms. The results will open avenues to advanced eyeglasses‐free 3D displays that can provide rich and well‐defined depth cues.
The creation of binocular depth cues by optical metasurfaces is demonstrated. The metasurface consisting of hologram pieces, which produce the angle‐dependent 2D projections of the target 3D object without cross‐talk, displays the holographic stereogram of 25 × 25 × 25 µm3 over a viewing angle of >60°. The modified Gerchberg–Saxton algorithm employing the spatial Fourier filter allows to design the metasurface for holographic stereopsis.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.201901970</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0618-3955</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-1071 |
ispartof | Advanced optical materials, 2020-04, Vol.8 (8), p.n/a |
issn | 2195-1071 2195-1071 |
language | eng |
recordid | cdi_proquest_journals_2390480218 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms computer‐generated holograms Displays Eyewear Holograms holographic stereograms Holography Materials science Metasurfaces meta‐atoms optical metasurfaces Optics Stereograms Stereophotography Viewing |
title | Optical Metasurface‐Based Holographic Stereogram |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A57%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20Metasurface%E2%80%90Based%20Holographic%20Stereogram&rft.jtitle=Advanced%20optical%20materials&rft.au=Choi,%20Yun%E2%80%90Seok&rft.date=2020-04-01&rft.volume=8&rft.issue=8&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.201901970&rft_dat=%3Cproquest_cross%3E2390480218%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390480218&rft_id=info:pmid/&rfr_iscdi=true |