Site-directed mutagenesis of coenzyme-independent carotenoid oxygenase CSO2 to enhance the enzymatic synthesis of vanillin

Vanillin is a popular flavoring compound and an important food additive. Owing to the consumer preference for inexpensive natural aroma flavors, vanillin production through a biotechnological pathway has become of great interest and commercial value in recent years. In this study, an enzymatic synth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2020-05, Vol.104 (9), p.3897-3907
Hauptverfasser: Yao, Xueyan, Lv, Yuemeng, Yu, Huilei, Cao, Hao, Wang, Luyao, Wen, Boting, Gu, Tianyi, Wang, Fengzhong, Sun, Lichao, Xin, Fengjiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3907
container_issue 9
container_start_page 3897
container_title Applied microbiology and biotechnology
container_volume 104
creator Yao, Xueyan
Lv, Yuemeng
Yu, Huilei
Cao, Hao
Wang, Luyao
Wen, Boting
Gu, Tianyi
Wang, Fengzhong
Sun, Lichao
Xin, Fengjiao
description Vanillin is a popular flavoring compound and an important food additive. Owing to the consumer preference for inexpensive natural aroma flavors, vanillin production through a biotechnological pathway has become of great interest and commercial value in recent years. In this study, an enzymatic synthetic system for vanillin using a coenzyme-independent decarboxylase (FDC) and oxygenase (CSO2) cascade was reconstituted and optimized. This system produces a slightly higher production yield (40.20%) than the largest yield reported for immobilized FDC and CSO2 (35.00%) with ferulic acid as a substrate. It was previously reported that the low catalytic activity and thermal instability of CSO2 restrict the overall productivity of vanillin. In present study, site-directed mutagenesis was applied to rate-limiting oxygenase CSO2 to generate positive mutants. The production yields of mutants A49P (58.44%) and Q390A (65.29%) were 1.45- and 1.62-fold that of CSO2 wild type, respectively. The potential mechanism for enhanced vanillin production using A49P involved increased thermostability and catalytic efficiency, while that using Q390A was probably associated with a better thermostable performance and increased catalytic efficiency resulting from a larger entrance channel.
doi_str_mv 10.1007/s00253-020-10433-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2390462304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A621114813</galeid><sourcerecordid>A621114813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-987f701f884c1b1f4a4d281899eaf56f7773d131c21071aeb29458410414e8853</originalsourceid><addsrcrecordid>eNp9kU9rGzEQxUVpady0X6CHIuipB6UaSburPQbTP4FAIG7PQtbOOgpeyZXkEOfTV43dBkMJAglGv_eGmUfIe-BnwHn3OXMuGsm44Ay4kpLBCzIDJQXjLaiXZMaha1jX9PqEvMn5lnMQum1fkxMpQHLV9jPysPAF2eATuoIDnbbFrjBg9pnGkbqI4WE3IfNhwA3WKxTqbIoFQ_QDjfe7StuMdL64ErREiuHGBoe03CB91NriHc27UAsH0zsb_Hrtw1vyarTrjO8O7yn5-fXLj_l3dnn17WJ-fslcA7KwXndjx2HUWjlYwqisGoQG3fdox6Ydu66TA0hwAngHFpeiV41WdSOgUOtGnpKPe99Nir-2mIu5jdsUaksjZF_XIOounqiVXaPxYYwlWTf57Mx5KwBAaZCVOvsPVc-Ak3cx4Ohr_Ujw6UhQmYL3ZWW3OZuLxfUxK_asSzHnhKPZJD_ZtDPAzZ_EzT5xUxM3j4kbqKIPh-m2ywmHf5K_EVdA7oFcv8IK09P4z9j-Bv-2tBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390462304</pqid></control><display><type>article</type><title>Site-directed mutagenesis of coenzyme-independent carotenoid oxygenase CSO2 to enhance the enzymatic synthesis of vanillin</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Yao, Xueyan ; Lv, Yuemeng ; Yu, Huilei ; Cao, Hao ; Wang, Luyao ; Wen, Boting ; Gu, Tianyi ; Wang, Fengzhong ; Sun, Lichao ; Xin, Fengjiao</creator><creatorcontrib>Yao, Xueyan ; Lv, Yuemeng ; Yu, Huilei ; Cao, Hao ; Wang, Luyao ; Wen, Boting ; Gu, Tianyi ; Wang, Fengzhong ; Sun, Lichao ; Xin, Fengjiao</creatorcontrib><description>Vanillin is a popular flavoring compound and an important food additive. Owing to the consumer preference for inexpensive natural aroma flavors, vanillin production through a biotechnological pathway has become of great interest and commercial value in recent years. In this study, an enzymatic synthetic system for vanillin using a coenzyme-independent decarboxylase (FDC) and oxygenase (CSO2) cascade was reconstituted and optimized. This system produces a slightly higher production yield (40.20%) than the largest yield reported for immobilized FDC and CSO2 (35.00%) with ferulic acid as a substrate. It was previously reported that the low catalytic activity and thermal instability of CSO2 restrict the overall productivity of vanillin. In present study, site-directed mutagenesis was applied to rate-limiting oxygenase CSO2 to generate positive mutants. The production yields of mutants A49P (58.44%) and Q390A (65.29%) were 1.45- and 1.62-fold that of CSO2 wild type, respectively. The potential mechanism for enhanced vanillin production using A49P involved increased thermostability and catalytic efficiency, while that using Q390A was probably associated with a better thermostable performance and increased catalytic efficiency resulting from a larger entrance channel.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-020-10433-1</identifier><identifier>PMID: 32130469</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aroma ; Bacillus pumilus - enzymology ; Bacillus pumilus - genetics ; Benzaldehydes - metabolism ; Biomedical and Life Sciences ; Biosynthesis ; Biotechnologically Relevant Enzymes and Proteins ; Biotechnology ; Carotenoids ; Catalysis ; Catalytic activity ; Caulobacter - enzymology ; Caulobacter - genetics ; Coenzymes ; Enzymatic synthesis ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Ferulic acid ; Food additives ; Hydrogen-Ion Concentration ; Life Sciences ; Metabolic Engineering ; Methods ; Microbial Genetics and Genomics ; Microbiological research ; Microbiology ; Mutagenesis ; Mutagenesis, Site-Directed ; Mutants ; Oxidases ; Oxygenase ; Oxygenases - genetics ; Oxygenases - metabolism ; Physiological aspects ; Protein Biosynthesis ; Site-directed mutagenesis ; Substrates ; Thermal instability ; Thermal stability ; Vanillin</subject><ispartof>Applied microbiology and biotechnology, 2020-05, Vol.104 (9), p.3897-3907</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-987f701f884c1b1f4a4d281899eaf56f7773d131c21071aeb29458410414e8853</citedby><cites>FETCH-LOGICAL-c513t-987f701f884c1b1f4a4d281899eaf56f7773d131c21071aeb29458410414e8853</cites><orcidid>0000-0002-8494-1419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-020-10433-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-020-10433-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32130469$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yao, Xueyan</creatorcontrib><creatorcontrib>Lv, Yuemeng</creatorcontrib><creatorcontrib>Yu, Huilei</creatorcontrib><creatorcontrib>Cao, Hao</creatorcontrib><creatorcontrib>Wang, Luyao</creatorcontrib><creatorcontrib>Wen, Boting</creatorcontrib><creatorcontrib>Gu, Tianyi</creatorcontrib><creatorcontrib>Wang, Fengzhong</creatorcontrib><creatorcontrib>Sun, Lichao</creatorcontrib><creatorcontrib>Xin, Fengjiao</creatorcontrib><title>Site-directed mutagenesis of coenzyme-independent carotenoid oxygenase CSO2 to enhance the enzymatic synthesis of vanillin</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Vanillin is a popular flavoring compound and an important food additive. Owing to the consumer preference for inexpensive natural aroma flavors, vanillin production through a biotechnological pathway has become of great interest and commercial value in recent years. In this study, an enzymatic synthetic system for vanillin using a coenzyme-independent decarboxylase (FDC) and oxygenase (CSO2) cascade was reconstituted and optimized. This system produces a slightly higher production yield (40.20%) than the largest yield reported for immobilized FDC and CSO2 (35.00%) with ferulic acid as a substrate. It was previously reported that the low catalytic activity and thermal instability of CSO2 restrict the overall productivity of vanillin. In present study, site-directed mutagenesis was applied to rate-limiting oxygenase CSO2 to generate positive mutants. The production yields of mutants A49P (58.44%) and Q390A (65.29%) were 1.45- and 1.62-fold that of CSO2 wild type, respectively. The potential mechanism for enhanced vanillin production using A49P involved increased thermostability and catalytic efficiency, while that using Q390A was probably associated with a better thermostable performance and increased catalytic efficiency resulting from a larger entrance channel.</description><subject>Aroma</subject><subject>Bacillus pumilus - enzymology</subject><subject>Bacillus pumilus - genetics</subject><subject>Benzaldehydes - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biotechnologically Relevant Enzymes and Proteins</subject><subject>Biotechnology</subject><subject>Carotenoids</subject><subject>Catalysis</subject><subject>Catalytic activity</subject><subject>Caulobacter - enzymology</subject><subject>Caulobacter - genetics</subject><subject>Coenzymes</subject><subject>Enzymatic synthesis</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Ferulic acid</subject><subject>Food additives</subject><subject>Hydrogen-Ion Concentration</subject><subject>Life Sciences</subject><subject>Metabolic Engineering</subject><subject>Methods</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiological research</subject><subject>Microbiology</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutants</subject><subject>Oxidases</subject><subject>Oxygenase</subject><subject>Oxygenases - genetics</subject><subject>Oxygenases - metabolism</subject><subject>Physiological aspects</subject><subject>Protein Biosynthesis</subject><subject>Site-directed mutagenesis</subject><subject>Substrates</subject><subject>Thermal instability</subject><subject>Thermal stability</subject><subject>Vanillin</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9rGzEQxUVpady0X6CHIuipB6UaSburPQbTP4FAIG7PQtbOOgpeyZXkEOfTV43dBkMJAglGv_eGmUfIe-BnwHn3OXMuGsm44Ay4kpLBCzIDJQXjLaiXZMaha1jX9PqEvMn5lnMQum1fkxMpQHLV9jPysPAF2eATuoIDnbbFrjBg9pnGkbqI4WE3IfNhwA3WKxTqbIoFQ_QDjfe7StuMdL64ErREiuHGBoe03CB91NriHc27UAsH0zsb_Hrtw1vyarTrjO8O7yn5-fXLj_l3dnn17WJ-fslcA7KwXndjx2HUWjlYwqisGoQG3fdox6Ydu66TA0hwAngHFpeiV41WdSOgUOtGnpKPe99Nir-2mIu5jdsUaksjZF_XIOounqiVXaPxYYwlWTf57Mx5KwBAaZCVOvsPVc-Ak3cx4Ohr_Ujw6UhQmYL3ZWW3OZuLxfUxK_asSzHnhKPZJD_ZtDPAzZ_EzT5xUxM3j4kbqKIPh-m2ywmHf5K_EVdA7oFcv8IK09P4z9j-Bv-2tBg</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Yao, Xueyan</creator><creator>Lv, Yuemeng</creator><creator>Yu, Huilei</creator><creator>Cao, Hao</creator><creator>Wang, Luyao</creator><creator>Wen, Boting</creator><creator>Gu, Tianyi</creator><creator>Wang, Fengzhong</creator><creator>Sun, Lichao</creator><creator>Xin, Fengjiao</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8494-1419</orcidid></search><sort><creationdate>20200501</creationdate><title>Site-directed mutagenesis of coenzyme-independent carotenoid oxygenase CSO2 to enhance the enzymatic synthesis of vanillin</title><author>Yao, Xueyan ; Lv, Yuemeng ; Yu, Huilei ; Cao, Hao ; Wang, Luyao ; Wen, Boting ; Gu, Tianyi ; Wang, Fengzhong ; Sun, Lichao ; Xin, Fengjiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-987f701f884c1b1f4a4d281899eaf56f7773d131c21071aeb29458410414e8853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aroma</topic><topic>Bacillus pumilus - enzymology</topic><topic>Bacillus pumilus - genetics</topic><topic>Benzaldehydes - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biotechnologically Relevant Enzymes and Proteins</topic><topic>Biotechnology</topic><topic>Carotenoids</topic><topic>Catalysis</topic><topic>Catalytic activity</topic><topic>Caulobacter - enzymology</topic><topic>Caulobacter - genetics</topic><topic>Coenzymes</topic><topic>Enzymatic synthesis</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Ferulic acid</topic><topic>Food additives</topic><topic>Hydrogen-Ion Concentration</topic><topic>Life Sciences</topic><topic>Metabolic Engineering</topic><topic>Methods</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiological research</topic><topic>Microbiology</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutants</topic><topic>Oxidases</topic><topic>Oxygenase</topic><topic>Oxygenases - genetics</topic><topic>Oxygenases - metabolism</topic><topic>Physiological aspects</topic><topic>Protein Biosynthesis</topic><topic>Site-directed mutagenesis</topic><topic>Substrates</topic><topic>Thermal instability</topic><topic>Thermal stability</topic><topic>Vanillin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Xueyan</creatorcontrib><creatorcontrib>Lv, Yuemeng</creatorcontrib><creatorcontrib>Yu, Huilei</creatorcontrib><creatorcontrib>Cao, Hao</creatorcontrib><creatorcontrib>Wang, Luyao</creatorcontrib><creatorcontrib>Wen, Boting</creatorcontrib><creatorcontrib>Gu, Tianyi</creatorcontrib><creatorcontrib>Wang, Fengzhong</creatorcontrib><creatorcontrib>Sun, Lichao</creatorcontrib><creatorcontrib>Xin, Fengjiao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Xueyan</au><au>Lv, Yuemeng</au><au>Yu, Huilei</au><au>Cao, Hao</au><au>Wang, Luyao</au><au>Wen, Boting</au><au>Gu, Tianyi</au><au>Wang, Fengzhong</au><au>Sun, Lichao</au><au>Xin, Fengjiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Site-directed mutagenesis of coenzyme-independent carotenoid oxygenase CSO2 to enhance the enzymatic synthesis of vanillin</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>104</volume><issue>9</issue><spage>3897</spage><epage>3907</epage><pages>3897-3907</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Vanillin is a popular flavoring compound and an important food additive. Owing to the consumer preference for inexpensive natural aroma flavors, vanillin production through a biotechnological pathway has become of great interest and commercial value in recent years. In this study, an enzymatic synthetic system for vanillin using a coenzyme-independent decarboxylase (FDC) and oxygenase (CSO2) cascade was reconstituted and optimized. This system produces a slightly higher production yield (40.20%) than the largest yield reported for immobilized FDC and CSO2 (35.00%) with ferulic acid as a substrate. It was previously reported that the low catalytic activity and thermal instability of CSO2 restrict the overall productivity of vanillin. In present study, site-directed mutagenesis was applied to rate-limiting oxygenase CSO2 to generate positive mutants. The production yields of mutants A49P (58.44%) and Q390A (65.29%) were 1.45- and 1.62-fold that of CSO2 wild type, respectively. The potential mechanism for enhanced vanillin production using A49P involved increased thermostability and catalytic efficiency, while that using Q390A was probably associated with a better thermostable performance and increased catalytic efficiency resulting from a larger entrance channel.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32130469</pmid><doi>10.1007/s00253-020-10433-1</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8494-1419</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2020-05, Vol.104 (9), p.3897-3907
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_journals_2390462304
source MEDLINE; SpringerLink Journals
subjects Aroma
Bacillus pumilus - enzymology
Bacillus pumilus - genetics
Benzaldehydes - metabolism
Biomedical and Life Sciences
Biosynthesis
Biotechnologically Relevant Enzymes and Proteins
Biotechnology
Carotenoids
Catalysis
Catalytic activity
Caulobacter - enzymology
Caulobacter - genetics
Coenzymes
Enzymatic synthesis
Escherichia coli - genetics
Escherichia coli - metabolism
Ferulic acid
Food additives
Hydrogen-Ion Concentration
Life Sciences
Metabolic Engineering
Methods
Microbial Genetics and Genomics
Microbiological research
Microbiology
Mutagenesis
Mutagenesis, Site-Directed
Mutants
Oxidases
Oxygenase
Oxygenases - genetics
Oxygenases - metabolism
Physiological aspects
Protein Biosynthesis
Site-directed mutagenesis
Substrates
Thermal instability
Thermal stability
Vanillin
title Site-directed mutagenesis of coenzyme-independent carotenoid oxygenase CSO2 to enhance the enzymatic synthesis of vanillin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A19%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Site-directed%20mutagenesis%20of%20coenzyme-independent%20carotenoid%20oxygenase%20CSO2%20to%20enhance%20the%20enzymatic%20synthesis%20of%20vanillin&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Yao,%20Xueyan&rft.date=2020-05-01&rft.volume=104&rft.issue=9&rft.spage=3897&rft.epage=3907&rft.pages=3897-3907&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-020-10433-1&rft_dat=%3Cgale_proqu%3EA621114813%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390462304&rft_id=info:pmid/32130469&rft_galeid=A621114813&rfr_iscdi=true