One-step spray of Cu2NiSnS4 thin films as absorber materials for photovoltaic applications
A simple one-step «Spray Pyrolysis» technique was developed for preparing Cu 2 NiSnS 4 (CNTS) thin film followed by an annealing treatment process. Originally, the spray technique was successfully used to deposit the thin film onto glass substrate at 250 °C for 60 min spray duration. Again, the depo...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2020-05, Vol.31 (9), p.7193-7199 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7199 |
---|---|
container_issue | 9 |
container_start_page | 7193 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 31 |
creator | Dridi, S. Bitri, N. Mahjoubi, S. Chaabouni, F. Ly, I. |
description | A simple one-step «Spray Pyrolysis» technique was developed for preparing Cu
2
NiSnS
4
(CNTS) thin film followed by an annealing treatment process. Originally, the spray technique was successfully used to deposit the thin film onto glass substrate at 250 °C for 60 min spray duration. Again, the deposited thin film was annealed in a sulfur atmosphere at a temperature of 500 °C during 30 min. The sulfured thin film exhibits (111), (220) and (311) orientations correspond well to the cubic CNTS structure and other impurity compounds. The SEM data exhibit a uniform, rough and compact topography of CNTS thin films with an average-thickness of 1.36 µm. The absorption coefficient is found to be higher than 10
4
cm
−1
in the visible region while the direct band energy of 1.62 eV, which is eminently suitable for use as an absorber in the solar cell. The complex impedance diagrams indicate the decrease of resistance by increasing temperature, which attributes to a semiconductor behavior. The close values of activation energies 0.63 and 0.54 eV determined from both angular frequency and DC conductivity indicate that the carrier transport mechanism is thermally activated. |
doi_str_mv | 10.1007/s10854-020-03291-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2390450709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2390450709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-8921a069c8f11af314d513faf80ddb134a64e58297efe59a80e84f1b84087edd3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9HJV5scZfELxD2sgngJaZu4WbpNTbrC_nurFbwJw8zled-BB6FzCpcUoLzKFJQUBBgQ4ExTAgdoRmXJiVDs9RDNQMuSCMnYMTrJeQMAheBqht6WnSN5cD3OfbJ7HD1e7NhTWHUrgYd16LAP7TZjO06VY6pcwls7uBRsm7GPCffrOMTP2A421Nj2fRtqO4TY5VN05EfInf3eOXq5vXle3JPH5d3D4vqR1LzgA1GaUQuFrpWn1HpORSMp99YraJqKcmEL4aRiunTeSW0VOCU8rZQAVbqm4XN0MfX2KX7sXB7MJu5SN740jGsQEkrQI8Umqk4x5-S86VPY2rQ3FMy3QzM5NKND8-Nw3HPEp9AoJ3TvLv1V_5P6AiPudIU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390450709</pqid></control><display><type>article</type><title>One-step spray of Cu2NiSnS4 thin films as absorber materials for photovoltaic applications</title><source>SpringerNature Journals</source><creator>Dridi, S. ; Bitri, N. ; Mahjoubi, S. ; Chaabouni, F. ; Ly, I.</creator><creatorcontrib>Dridi, S. ; Bitri, N. ; Mahjoubi, S. ; Chaabouni, F. ; Ly, I.</creatorcontrib><description>A simple one-step «Spray Pyrolysis» technique was developed for preparing Cu
2
NiSnS
4
(CNTS) thin film followed by an annealing treatment process. Originally, the spray technique was successfully used to deposit the thin film onto glass substrate at 250 °C for 60 min spray duration. Again, the deposited thin film was annealed in a sulfur atmosphere at a temperature of 500 °C during 30 min. The sulfured thin film exhibits (111), (220) and (311) orientations correspond well to the cubic CNTS structure and other impurity compounds. The SEM data exhibit a uniform, rough and compact topography of CNTS thin films with an average-thickness of 1.36 µm. The absorption coefficient is found to be higher than 10
4
cm
−1
in the visible region while the direct band energy of 1.62 eV, which is eminently suitable for use as an absorber in the solar cell. The complex impedance diagrams indicate the decrease of resistance by increasing temperature, which attributes to a semiconductor behavior. The close values of activation energies 0.63 and 0.54 eV determined from both angular frequency and DC conductivity indicate that the carrier transport mechanism is thermally activated.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-020-03291-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Absorbers (materials) ; Absorptivity ; Annealing ; Carrier transport ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Glass substrates ; Materials Science ; Optical and Electronic Materials ; Photovoltaic cells ; Solar cells ; Spray pyrolysis ; Thickness ; Thin films</subject><ispartof>Journal of materials science. Materials in electronics, 2020-05, Vol.31 (9), p.7193-7199</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-8921a069c8f11af314d513faf80ddb134a64e58297efe59a80e84f1b84087edd3</citedby><cites>FETCH-LOGICAL-c363t-8921a069c8f11af314d513faf80ddb134a64e58297efe59a80e84f1b84087edd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-020-03291-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-020-03291-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Dridi, S.</creatorcontrib><creatorcontrib>Bitri, N.</creatorcontrib><creatorcontrib>Mahjoubi, S.</creatorcontrib><creatorcontrib>Chaabouni, F.</creatorcontrib><creatorcontrib>Ly, I.</creatorcontrib><title>One-step spray of Cu2NiSnS4 thin films as absorber materials for photovoltaic applications</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>A simple one-step «Spray Pyrolysis» technique was developed for preparing Cu
2
NiSnS
4
(CNTS) thin film followed by an annealing treatment process. Originally, the spray technique was successfully used to deposit the thin film onto glass substrate at 250 °C for 60 min spray duration. Again, the deposited thin film was annealed in a sulfur atmosphere at a temperature of 500 °C during 30 min. The sulfured thin film exhibits (111), (220) and (311) orientations correspond well to the cubic CNTS structure and other impurity compounds. The SEM data exhibit a uniform, rough and compact topography of CNTS thin films with an average-thickness of 1.36 µm. The absorption coefficient is found to be higher than 10
4
cm
−1
in the visible region while the direct band energy of 1.62 eV, which is eminently suitable for use as an absorber in the solar cell. The complex impedance diagrams indicate the decrease of resistance by increasing temperature, which attributes to a semiconductor behavior. The close values of activation energies 0.63 and 0.54 eV determined from both angular frequency and DC conductivity indicate that the carrier transport mechanism is thermally activated.</description><subject>Absorbers (materials)</subject><subject>Absorptivity</subject><subject>Annealing</subject><subject>Carrier transport</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Glass substrates</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Spray pyrolysis</subject><subject>Thickness</subject><subject>Thin films</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9HJV5scZfELxD2sgngJaZu4WbpNTbrC_nurFbwJw8zled-BB6FzCpcUoLzKFJQUBBgQ4ExTAgdoRmXJiVDs9RDNQMuSCMnYMTrJeQMAheBqht6WnSN5cD3OfbJ7HD1e7NhTWHUrgYd16LAP7TZjO06VY6pcwls7uBRsm7GPCffrOMTP2A421Nj2fRtqO4TY5VN05EfInf3eOXq5vXle3JPH5d3D4vqR1LzgA1GaUQuFrpWn1HpORSMp99YraJqKcmEL4aRiunTeSW0VOCU8rZQAVbqm4XN0MfX2KX7sXB7MJu5SN740jGsQEkrQI8Umqk4x5-S86VPY2rQ3FMy3QzM5NKND8-Nw3HPEp9AoJ3TvLv1V_5P6AiPudIU</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Dridi, S.</creator><creator>Bitri, N.</creator><creator>Mahjoubi, S.</creator><creator>Chaabouni, F.</creator><creator>Ly, I.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20200501</creationdate><title>One-step spray of Cu2NiSnS4 thin films as absorber materials for photovoltaic applications</title><author>Dridi, S. ; Bitri, N. ; Mahjoubi, S. ; Chaabouni, F. ; Ly, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-8921a069c8f11af314d513faf80ddb134a64e58297efe59a80e84f1b84087edd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorbers (materials)</topic><topic>Absorptivity</topic><topic>Annealing</topic><topic>Carrier transport</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Glass substrates</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Spray pyrolysis</topic><topic>Thickness</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dridi, S.</creatorcontrib><creatorcontrib>Bitri, N.</creatorcontrib><creatorcontrib>Mahjoubi, S.</creatorcontrib><creatorcontrib>Chaabouni, F.</creatorcontrib><creatorcontrib>Ly, I.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dridi, S.</au><au>Bitri, N.</au><au>Mahjoubi, S.</au><au>Chaabouni, F.</au><au>Ly, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-step spray of Cu2NiSnS4 thin films as absorber materials for photovoltaic applications</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>31</volume><issue>9</issue><spage>7193</spage><epage>7199</epage><pages>7193-7199</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>A simple one-step «Spray Pyrolysis» technique was developed for preparing Cu
2
NiSnS
4
(CNTS) thin film followed by an annealing treatment process. Originally, the spray technique was successfully used to deposit the thin film onto glass substrate at 250 °C for 60 min spray duration. Again, the deposited thin film was annealed in a sulfur atmosphere at a temperature of 500 °C during 30 min. The sulfured thin film exhibits (111), (220) and (311) orientations correspond well to the cubic CNTS structure and other impurity compounds. The SEM data exhibit a uniform, rough and compact topography of CNTS thin films with an average-thickness of 1.36 µm. The absorption coefficient is found to be higher than 10
4
cm
−1
in the visible region while the direct band energy of 1.62 eV, which is eminently suitable for use as an absorber in the solar cell. The complex impedance diagrams indicate the decrease of resistance by increasing temperature, which attributes to a semiconductor behavior. The close values of activation energies 0.63 and 0.54 eV determined from both angular frequency and DC conductivity indicate that the carrier transport mechanism is thermally activated.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-020-03291-0</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2020-05, Vol.31 (9), p.7193-7199 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2390450709 |
source | SpringerNature Journals |
subjects | Absorbers (materials) Absorptivity Annealing Carrier transport Characterization and Evaluation of Materials Chemistry and Materials Science Glass substrates Materials Science Optical and Electronic Materials Photovoltaic cells Solar cells Spray pyrolysis Thickness Thin films |
title | One-step spray of Cu2NiSnS4 thin films as absorber materials for photovoltaic applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A49%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-step%20spray%20of%20Cu2NiSnS4%20thin%20films%20as%20absorber%20materials%20for%20photovoltaic%20applications&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Dridi,%20S.&rft.date=2020-05-01&rft.volume=31&rft.issue=9&rft.spage=7193&rft.epage=7199&rft.pages=7193-7199&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-020-03291-0&rft_dat=%3Cproquest_cross%3E2390450709%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390450709&rft_id=info:pmid/&rfr_iscdi=true |