Magnitudes and Spatial Patterns of Interdecadal Temperature Variability in CMIP6

Attribution and prediction of global and regional warming requires a better understanding of the magnitude and spatial characteristics of internal global mean surface air temperature (GMST) variability. We examine interdecadal GMST variability in Coupled Modeling Intercomparison Projects, Phases 3,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2020-04, Vol.47 (7), p.n/a
Hauptverfasser: Parsons, Luke A., Brennan, M. Kathleen, Wills, Robert C.J., Proistosescu, Cristian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page
container_title Geophysical research letters
container_volume 47
creator Parsons, Luke A.
Brennan, M. Kathleen
Wills, Robert C.J.
Proistosescu, Cristian
description Attribution and prediction of global and regional warming requires a better understanding of the magnitude and spatial characteristics of internal global mean surface air temperature (GMST) variability. We examine interdecadal GMST variability in Coupled Modeling Intercomparison Projects, Phases 3, 5, and 6 (CMIP3, CMIP5, and CMIP6) preindustrial control (piControl), last millennium, and historical simulations and in observational data. We find that several CMIP6 simulations show more GMST interdecadal variability than the previous generations of model simulations. Nonetheless, we find that 100‐year trends in CMIP6 piControl simulations never exceed the maximum observed warming trend. Furthermore, interdecadal GMST variability in the unforced piControl simulations is associated with regional variability in the high latitudes and the east Pacific, whereas interdecadal GMST variability in instrumental data and in historical simulations with external forcing is more globally coherent and is associated with variability in tropical deep convective regions. Plain Language Summary Ongoing and future global and regional warming will progress as a combination of internal climate variability and forced climate change. Understanding the magnitude and spatial patterns associated with internal climate variability is an important aspect of being able to predict when, where, and how climate change will be felt around the globe. Here, we show that the latest climate model simulations, which will be used in the Intergovernmental Panel on Climate Change (IPCC) Assessment Report 6 (AR6), simulate a large range in magnitudes of internal global mean temperature variability. Although there are large unforced global temperature trends in some models, we find that even the most variable models never generate unforced global temperature trends equal to the recently observed global warming trends forced by greenhouse gas emissions. We examine the regions associated with internal climate variability and forced climate change in climate model simulations and find that only forced simulations show a pattern of warming consistent with instrumental data. Key Points Several CMIP6 control simulations show more interdecadal global mean temperature variability than previous model generations Even the most variable CMIP6 models never show century‐length global mean temperature trends that exceed observed warming trends Unlike in control simulations, observed global mean temperature variabili
doi_str_mv 10.1029/2019GL086588
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2390324399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2390324399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3443-cfd46d13e70a139e7e65495c993cf8f371f1bcc0ba5f23b73fefe483a95fc4613</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK7e_AABr1Zf-tI_Ocqi60LFRVevJU1fJEu3rUmL7Le3sh48eZqB-TEDw9ilgBsBsbqNQahlAXma5PkRmwklZZQDZMdsBqAmH2fpKTsLYQsACChmbP2kP1o3jDUFrtuav_Z6cLrhaz0M5NvAO8tX7WRrMrqegg3tevJ6GD3xd-2drlzjhj13LV88rdbpOTuxugl08atz9vZwv1k8RsXzcrW4KyKDUmJkbC3TWiBloAUqyihNpEqMUmhsbjETVlTGQKUTG2OVoSVLMketEmtkKnDOrg69ve8-RwpDue1G306TZYwKMJY4dc3Z9YEyvgvBky1773ba70sB5c9n5d_PJjw-4F-uof2_bLl8KVKQCeI3t3Rspg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390324399</pqid></control><display><type>article</type><title>Magnitudes and Spatial Patterns of Interdecadal Temperature Variability in CMIP6</title><source>Wiley Online Library AGU 2017</source><source>Wiley Online Library Journals</source><source>Wiley Online Library Free Content</source><source>EZB Electronic Journals Library</source><creator>Parsons, Luke A. ; Brennan, M. Kathleen ; Wills, Robert C.J. ; Proistosescu, Cristian</creator><creatorcontrib>Parsons, Luke A. ; Brennan, M. Kathleen ; Wills, Robert C.J. ; Proistosescu, Cristian</creatorcontrib><description>Attribution and prediction of global and regional warming requires a better understanding of the magnitude and spatial characteristics of internal global mean surface air temperature (GMST) variability. We examine interdecadal GMST variability in Coupled Modeling Intercomparison Projects, Phases 3, 5, and 6 (CMIP3, CMIP5, and CMIP6) preindustrial control (piControl), last millennium, and historical simulations and in observational data. We find that several CMIP6 simulations show more GMST interdecadal variability than the previous generations of model simulations. Nonetheless, we find that 100‐year trends in CMIP6 piControl simulations never exceed the maximum observed warming trend. Furthermore, interdecadal GMST variability in the unforced piControl simulations is associated with regional variability in the high latitudes and the east Pacific, whereas interdecadal GMST variability in instrumental data and in historical simulations with external forcing is more globally coherent and is associated with variability in tropical deep convective regions. Plain Language Summary Ongoing and future global and regional warming will progress as a combination of internal climate variability and forced climate change. Understanding the magnitude and spatial patterns associated with internal climate variability is an important aspect of being able to predict when, where, and how climate change will be felt around the globe. Here, we show that the latest climate model simulations, which will be used in the Intergovernmental Panel on Climate Change (IPCC) Assessment Report 6 (AR6), simulate a large range in magnitudes of internal global mean temperature variability. Although there are large unforced global temperature trends in some models, we find that even the most variable models never generate unforced global temperature trends equal to the recently observed global warming trends forced by greenhouse gas emissions. We examine the regions associated with internal climate variability and forced climate change in climate model simulations and find that only forced simulations show a pattern of warming consistent with instrumental data. Key Points Several CMIP6 control simulations show more interdecadal global mean temperature variability than previous model generations Even the most variable CMIP6 models never show century‐length global mean temperature trends that exceed observed warming trends Unlike in control simulations, observed global mean temperature variability is coherent with variability in tropical convective regions</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2019GL086588</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Air temperature ; Climate change ; climate dynamics ; Climate models ; Climate variability ; CMIP6 ; Computer simulation ; decadal climate variability ; Global temperatures ; Global warming ; Greenhouse effect ; Greenhouse gases ; Intercomparison ; Interdecadal variability ; Intergovernmental Panel on Climate Change ; internal and forced variability ; Mean temperatures ; model‐observation comparison ; Regions ; Simulation ; Spatial variations ; Surface temperature ; Surface-air temperature relationships ; Temperature trends ; Temperature variability ; Trends ; Tropical climate</subject><ispartof>Geophysical research letters, 2020-04, Vol.47 (7), p.n/a</ispartof><rights>2020. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3443-cfd46d13e70a139e7e65495c993cf8f371f1bcc0ba5f23b73fefe483a95fc4613</citedby><cites>FETCH-LOGICAL-c3443-cfd46d13e70a139e7e65495c993cf8f371f1bcc0ba5f23b73fefe483a95fc4613</cites><orcidid>0000-0002-1717-124X ; 0000-0001-9097-4383 ; 0000-0002-7776-2076 ; 0000-0003-3147-0593</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2019GL086588$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2019GL086588$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids></links><search><creatorcontrib>Parsons, Luke A.</creatorcontrib><creatorcontrib>Brennan, M. Kathleen</creatorcontrib><creatorcontrib>Wills, Robert C.J.</creatorcontrib><creatorcontrib>Proistosescu, Cristian</creatorcontrib><title>Magnitudes and Spatial Patterns of Interdecadal Temperature Variability in CMIP6</title><title>Geophysical research letters</title><description>Attribution and prediction of global and regional warming requires a better understanding of the magnitude and spatial characteristics of internal global mean surface air temperature (GMST) variability. We examine interdecadal GMST variability in Coupled Modeling Intercomparison Projects, Phases 3, 5, and 6 (CMIP3, CMIP5, and CMIP6) preindustrial control (piControl), last millennium, and historical simulations and in observational data. We find that several CMIP6 simulations show more GMST interdecadal variability than the previous generations of model simulations. Nonetheless, we find that 100‐year trends in CMIP6 piControl simulations never exceed the maximum observed warming trend. Furthermore, interdecadal GMST variability in the unforced piControl simulations is associated with regional variability in the high latitudes and the east Pacific, whereas interdecadal GMST variability in instrumental data and in historical simulations with external forcing is more globally coherent and is associated with variability in tropical deep convective regions. Plain Language Summary Ongoing and future global and regional warming will progress as a combination of internal climate variability and forced climate change. Understanding the magnitude and spatial patterns associated with internal climate variability is an important aspect of being able to predict when, where, and how climate change will be felt around the globe. Here, we show that the latest climate model simulations, which will be used in the Intergovernmental Panel on Climate Change (IPCC) Assessment Report 6 (AR6), simulate a large range in magnitudes of internal global mean temperature variability. Although there are large unforced global temperature trends in some models, we find that even the most variable models never generate unforced global temperature trends equal to the recently observed global warming trends forced by greenhouse gas emissions. We examine the regions associated with internal climate variability and forced climate change in climate model simulations and find that only forced simulations show a pattern of warming consistent with instrumental data. Key Points Several CMIP6 control simulations show more interdecadal global mean temperature variability than previous model generations Even the most variable CMIP6 models never show century‐length global mean temperature trends that exceed observed warming trends Unlike in control simulations, observed global mean temperature variability is coherent with variability in tropical convective regions</description><subject>Air temperature</subject><subject>Climate change</subject><subject>climate dynamics</subject><subject>Climate models</subject><subject>Climate variability</subject><subject>CMIP6</subject><subject>Computer simulation</subject><subject>decadal climate variability</subject><subject>Global temperatures</subject><subject>Global warming</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Intercomparison</subject><subject>Interdecadal variability</subject><subject>Intergovernmental Panel on Climate Change</subject><subject>internal and forced variability</subject><subject>Mean temperatures</subject><subject>model‐observation comparison</subject><subject>Regions</subject><subject>Simulation</subject><subject>Spatial variations</subject><subject>Surface temperature</subject><subject>Surface-air temperature relationships</subject><subject>Temperature trends</subject><subject>Temperature variability</subject><subject>Trends</subject><subject>Tropical climate</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMouK7e_AABr1Zf-tI_Ocqi60LFRVevJU1fJEu3rUmL7Le3sh48eZqB-TEDw9ilgBsBsbqNQahlAXma5PkRmwklZZQDZMdsBqAmH2fpKTsLYQsACChmbP2kP1o3jDUFrtuav_Z6cLrhaz0M5NvAO8tX7WRrMrqegg3tevJ6GD3xd-2drlzjhj13LV88rdbpOTuxugl08atz9vZwv1k8RsXzcrW4KyKDUmJkbC3TWiBloAUqyihNpEqMUmhsbjETVlTGQKUTG2OVoSVLMketEmtkKnDOrg69ve8-RwpDue1G306TZYwKMJY4dc3Z9YEyvgvBky1773ba70sB5c9n5d_PJjw-4F-uof2_bLl8KVKQCeI3t3Rspg</recordid><startdate>20200416</startdate><enddate>20200416</enddate><creator>Parsons, Luke A.</creator><creator>Brennan, M. Kathleen</creator><creator>Wills, Robert C.J.</creator><creator>Proistosescu, Cristian</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1717-124X</orcidid><orcidid>https://orcid.org/0000-0001-9097-4383</orcidid><orcidid>https://orcid.org/0000-0002-7776-2076</orcidid><orcidid>https://orcid.org/0000-0003-3147-0593</orcidid></search><sort><creationdate>20200416</creationdate><title>Magnitudes and Spatial Patterns of Interdecadal Temperature Variability in CMIP6</title><author>Parsons, Luke A. ; Brennan, M. Kathleen ; Wills, Robert C.J. ; Proistosescu, Cristian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3443-cfd46d13e70a139e7e65495c993cf8f371f1bcc0ba5f23b73fefe483a95fc4613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Air temperature</topic><topic>Climate change</topic><topic>climate dynamics</topic><topic>Climate models</topic><topic>Climate variability</topic><topic>CMIP6</topic><topic>Computer simulation</topic><topic>decadal climate variability</topic><topic>Global temperatures</topic><topic>Global warming</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Intercomparison</topic><topic>Interdecadal variability</topic><topic>Intergovernmental Panel on Climate Change</topic><topic>internal and forced variability</topic><topic>Mean temperatures</topic><topic>model‐observation comparison</topic><topic>Regions</topic><topic>Simulation</topic><topic>Spatial variations</topic><topic>Surface temperature</topic><topic>Surface-air temperature relationships</topic><topic>Temperature trends</topic><topic>Temperature variability</topic><topic>Trends</topic><topic>Tropical climate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parsons, Luke A.</creatorcontrib><creatorcontrib>Brennan, M. Kathleen</creatorcontrib><creatorcontrib>Wills, Robert C.J.</creatorcontrib><creatorcontrib>Proistosescu, Cristian</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parsons, Luke A.</au><au>Brennan, M. Kathleen</au><au>Wills, Robert C.J.</au><au>Proistosescu, Cristian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnitudes and Spatial Patterns of Interdecadal Temperature Variability in CMIP6</atitle><jtitle>Geophysical research letters</jtitle><date>2020-04-16</date><risdate>2020</risdate><volume>47</volume><issue>7</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Attribution and prediction of global and regional warming requires a better understanding of the magnitude and spatial characteristics of internal global mean surface air temperature (GMST) variability. We examine interdecadal GMST variability in Coupled Modeling Intercomparison Projects, Phases 3, 5, and 6 (CMIP3, CMIP5, and CMIP6) preindustrial control (piControl), last millennium, and historical simulations and in observational data. We find that several CMIP6 simulations show more GMST interdecadal variability than the previous generations of model simulations. Nonetheless, we find that 100‐year trends in CMIP6 piControl simulations never exceed the maximum observed warming trend. Furthermore, interdecadal GMST variability in the unforced piControl simulations is associated with regional variability in the high latitudes and the east Pacific, whereas interdecadal GMST variability in instrumental data and in historical simulations with external forcing is more globally coherent and is associated with variability in tropical deep convective regions. Plain Language Summary Ongoing and future global and regional warming will progress as a combination of internal climate variability and forced climate change. Understanding the magnitude and spatial patterns associated with internal climate variability is an important aspect of being able to predict when, where, and how climate change will be felt around the globe. Here, we show that the latest climate model simulations, which will be used in the Intergovernmental Panel on Climate Change (IPCC) Assessment Report 6 (AR6), simulate a large range in magnitudes of internal global mean temperature variability. Although there are large unforced global temperature trends in some models, we find that even the most variable models never generate unforced global temperature trends equal to the recently observed global warming trends forced by greenhouse gas emissions. We examine the regions associated with internal climate variability and forced climate change in climate model simulations and find that only forced simulations show a pattern of warming consistent with instrumental data. Key Points Several CMIP6 control simulations show more interdecadal global mean temperature variability than previous model generations Even the most variable CMIP6 models never show century‐length global mean temperature trends that exceed observed warming trends Unlike in control simulations, observed global mean temperature variability is coherent with variability in tropical convective regions</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2019GL086588</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1717-124X</orcidid><orcidid>https://orcid.org/0000-0001-9097-4383</orcidid><orcidid>https://orcid.org/0000-0002-7776-2076</orcidid><orcidid>https://orcid.org/0000-0003-3147-0593</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2020-04, Vol.47 (7), p.n/a
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_journals_2390324399
source Wiley Online Library AGU 2017; Wiley Online Library Journals; Wiley Online Library Free Content; EZB Electronic Journals Library
subjects Air temperature
Climate change
climate dynamics
Climate models
Climate variability
CMIP6
Computer simulation
decadal climate variability
Global temperatures
Global warming
Greenhouse effect
Greenhouse gases
Intercomparison
Interdecadal variability
Intergovernmental Panel on Climate Change
internal and forced variability
Mean temperatures
model‐observation comparison
Regions
Simulation
Spatial variations
Surface temperature
Surface-air temperature relationships
Temperature trends
Temperature variability
Trends
Tropical climate
title Magnitudes and Spatial Patterns of Interdecadal Temperature Variability in CMIP6
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnitudes%20and%20Spatial%20Patterns%20of%20Interdecadal%20Temperature%20Variability%20in%20CMIP6&rft.jtitle=Geophysical%20research%20letters&rft.au=Parsons,%20Luke%20A.&rft.date=2020-04-16&rft.volume=47&rft.issue=7&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2019GL086588&rft_dat=%3Cproquest_cross%3E2390324399%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390324399&rft_id=info:pmid/&rfr_iscdi=true