Electrified Cloud Areas Observed in the SHV and LDR Radar Modes
Strong in-cloud electric fields align ice particles that can be observed with polarization diversity radars. Radar data collected in the simultaneous transmission mode, wherein horizontally and vertically polarized waves are simultaneously transmitted and received (SHV), and in a mode whereby a sing...
Gespeichert in:
Veröffentlicht in: | Journal of atmospheric and oceanic technology 2019-01, Vol.36 (1), p.151-159 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 159 |
---|---|
container_issue | 1 |
container_start_page | 151 |
container_title | Journal of atmospheric and oceanic technology |
container_volume | 36 |
creator | Melnikov, Valery Zrnić, Dusan S. Weber, Mark E. Fierro, Alexandre O. MacGorman, Donald R. |
description | Strong in-cloud electric fields align ice particles that can be observed with polarization diversity radars. Radar data collected in the simultaneous transmission mode, wherein horizontally and vertically polarized waves are simultaneously transmitted and received (SHV), and in a mode whereby a single-polarization wave is transmitted and dual (orthogonal)-polarization waves are received simultaneously [linear depolarization (LDR) mode] are analyzed. The necessary time delay between the SHV and LDR modes for our radar was about 1–4 min. The data show that the areas of canted crystals from the LDR mode are larger than those from the SHV mode, thereby indicating that the LDR mode is more sensitive to canted ice cloud particles than the SHV mode. The data also demonstrate that the differential phase and correlation coefficient in the LDR mode are indicative of canted cloud crystals and that these variables often are more sensitive to canted crystals than the linear depolarization ratio studied earlier. Rapidly scanning radars such as those with a phased array antenna could operate sequentially in the SHV and LDR modes and thus better detect cloud volumes characterized by enhanced electric fields. |
doi_str_mv | 10.1175/JTECH-D-18-0022.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2390200644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2390200644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-82a951dbd9a2ffa2e6a2b67fc642a12b7f7b521b56bbeaf9bdc1aa30565f65863</originalsourceid><addsrcrecordid>eNotkEFLAzEUhIMoWKs_wFvAc_S9t5vs7klKW61SKdTqNSSbBLfUbk22gv_erfU0MAwzw8fYNcItYiHvnlfT8UxMBJYCgOgWT9gAJYGAnNQpG0CRVQJkQefsIqU1AGCGasDupxtfd7EJjXd8vGn3jo-iN4kvbPLxuzebLe8-PH-dvXOzdXw-WfKlcSbyl9b5dMnOgtkkf_WvQ_b2MF31V-aLx6fxaC7qfqYTJZlKorOuMhSCIa8MWVWEWuVkkGwRCisJrVTWehMq62o0JgOpZFCyVNmQ3Rx7d7H92vvU6XW7j9t-UlNWAQGoPO9TeEzVsU0p-qB3sfk08Ucj6AMn_cdJTzSW-sBJY_YLu8FZsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390200644</pqid></control><display><type>article</type><title>Electrified Cloud Areas Observed in the SHV and LDR Radar Modes</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Melnikov, Valery ; Zrnić, Dusan S. ; Weber, Mark E. ; Fierro, Alexandre O. ; MacGorman, Donald R.</creator><creatorcontrib>Melnikov, Valery ; Zrnić, Dusan S. ; Weber, Mark E. ; Fierro, Alexandre O. ; MacGorman, Donald R.</creatorcontrib><description>Strong in-cloud electric fields align ice particles that can be observed with polarization diversity radars. Radar data collected in the simultaneous transmission mode, wherein horizontally and vertically polarized waves are simultaneously transmitted and received (SHV), and in a mode whereby a single-polarization wave is transmitted and dual (orthogonal)-polarization waves are received simultaneously [linear depolarization (LDR) mode] are analyzed. The necessary time delay between the SHV and LDR modes for our radar was about 1–4 min. The data show that the areas of canted crystals from the LDR mode are larger than those from the SHV mode, thereby indicating that the LDR mode is more sensitive to canted ice cloud particles than the SHV mode. The data also demonstrate that the differential phase and correlation coefficient in the LDR mode are indicative of canted cloud crystals and that these variables often are more sensitive to canted crystals than the linear depolarization ratio studied earlier. Rapidly scanning radars such as those with a phased array antenna could operate sequentially in the SHV and LDR modes and thus better detect cloud volumes characterized by enhanced electric fields.</description><identifier>ISSN: 0739-0572</identifier><identifier>EISSN: 1520-0426</identifier><identifier>DOI: 10.1175/JTECH-D-18-0022.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Antenna arrays ; Aviation ; Cloud particles ; Correlation coefficient ; Correlation coefficients ; Crystals ; Depolarization ; Electric field ; Electric fields ; Filing ; Ice clouds ; Ice particles ; Lightning ; Modes ; Noise ; Phased arrays ; Polarization ; Radar ; Radar data ; Satellite communications ; Vertical polarization</subject><ispartof>Journal of atmospheric and oceanic technology, 2019-01, Vol.36 (1), p.151-159</ispartof><rights>Copyright American Meteorological Society Jan 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-82a951dbd9a2ffa2e6a2b67fc642a12b7f7b521b56bbeaf9bdc1aa30565f65863</citedby><cites>FETCH-LOGICAL-c316t-82a951dbd9a2ffa2e6a2b67fc642a12b7f7b521b56bbeaf9bdc1aa30565f65863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27903,27904</link.rule.ids></links><search><creatorcontrib>Melnikov, Valery</creatorcontrib><creatorcontrib>Zrnić, Dusan S.</creatorcontrib><creatorcontrib>Weber, Mark E.</creatorcontrib><creatorcontrib>Fierro, Alexandre O.</creatorcontrib><creatorcontrib>MacGorman, Donald R.</creatorcontrib><title>Electrified Cloud Areas Observed in the SHV and LDR Radar Modes</title><title>Journal of atmospheric and oceanic technology</title><description>Strong in-cloud electric fields align ice particles that can be observed with polarization diversity radars. Radar data collected in the simultaneous transmission mode, wherein horizontally and vertically polarized waves are simultaneously transmitted and received (SHV), and in a mode whereby a single-polarization wave is transmitted and dual (orthogonal)-polarization waves are received simultaneously [linear depolarization (LDR) mode] are analyzed. The necessary time delay between the SHV and LDR modes for our radar was about 1–4 min. The data show that the areas of canted crystals from the LDR mode are larger than those from the SHV mode, thereby indicating that the LDR mode is more sensitive to canted ice cloud particles than the SHV mode. The data also demonstrate that the differential phase and correlation coefficient in the LDR mode are indicative of canted cloud crystals and that these variables often are more sensitive to canted crystals than the linear depolarization ratio studied earlier. Rapidly scanning radars such as those with a phased array antenna could operate sequentially in the SHV and LDR modes and thus better detect cloud volumes characterized by enhanced electric fields.</description><subject>Antenna arrays</subject><subject>Aviation</subject><subject>Cloud particles</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Crystals</subject><subject>Depolarization</subject><subject>Electric field</subject><subject>Electric fields</subject><subject>Filing</subject><subject>Ice clouds</subject><subject>Ice particles</subject><subject>Lightning</subject><subject>Modes</subject><subject>Noise</subject><subject>Phased arrays</subject><subject>Polarization</subject><subject>Radar</subject><subject>Radar data</subject><subject>Satellite communications</subject><subject>Vertical polarization</subject><issn>0739-0572</issn><issn>1520-0426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkEFLAzEUhIMoWKs_wFvAc_S9t5vs7klKW61SKdTqNSSbBLfUbk22gv_erfU0MAwzw8fYNcItYiHvnlfT8UxMBJYCgOgWT9gAJYGAnNQpG0CRVQJkQefsIqU1AGCGasDupxtfd7EJjXd8vGn3jo-iN4kvbPLxuzebLe8-PH-dvXOzdXw-WfKlcSbyl9b5dMnOgtkkf_WvQ_b2MF31V-aLx6fxaC7qfqYTJZlKorOuMhSCIa8MWVWEWuVkkGwRCisJrVTWehMq62o0JgOpZFCyVNmQ3Rx7d7H92vvU6XW7j9t-UlNWAQGoPO9TeEzVsU0p-qB3sfk08Ucj6AMn_cdJTzSW-sBJY_YLu8FZsw</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Melnikov, Valery</creator><creator>Zrnić, Dusan S.</creator><creator>Weber, Mark E.</creator><creator>Fierro, Alexandre O.</creator><creator>MacGorman, Donald R.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>201901</creationdate><title>Electrified Cloud Areas Observed in the SHV and LDR Radar Modes</title><author>Melnikov, Valery ; Zrnić, Dusan S. ; Weber, Mark E. ; Fierro, Alexandre O. ; MacGorman, Donald R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-82a951dbd9a2ffa2e6a2b67fc642a12b7f7b521b56bbeaf9bdc1aa30565f65863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antenna arrays</topic><topic>Aviation</topic><topic>Cloud particles</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Crystals</topic><topic>Depolarization</topic><topic>Electric field</topic><topic>Electric fields</topic><topic>Filing</topic><topic>Ice clouds</topic><topic>Ice particles</topic><topic>Lightning</topic><topic>Modes</topic><topic>Noise</topic><topic>Phased arrays</topic><topic>Polarization</topic><topic>Radar</topic><topic>Radar data</topic><topic>Satellite communications</topic><topic>Vertical polarization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Melnikov, Valery</creatorcontrib><creatorcontrib>Zrnić, Dusan S.</creatorcontrib><creatorcontrib>Weber, Mark E.</creatorcontrib><creatorcontrib>Fierro, Alexandre O.</creatorcontrib><creatorcontrib>MacGorman, Donald R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of atmospheric and oceanic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Melnikov, Valery</au><au>Zrnić, Dusan S.</au><au>Weber, Mark E.</au><au>Fierro, Alexandre O.</au><au>MacGorman, Donald R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrified Cloud Areas Observed in the SHV and LDR Radar Modes</atitle><jtitle>Journal of atmospheric and oceanic technology</jtitle><date>2019-01</date><risdate>2019</risdate><volume>36</volume><issue>1</issue><spage>151</spage><epage>159</epage><pages>151-159</pages><issn>0739-0572</issn><eissn>1520-0426</eissn><abstract>Strong in-cloud electric fields align ice particles that can be observed with polarization diversity radars. Radar data collected in the simultaneous transmission mode, wherein horizontally and vertically polarized waves are simultaneously transmitted and received (SHV), and in a mode whereby a single-polarization wave is transmitted and dual (orthogonal)-polarization waves are received simultaneously [linear depolarization (LDR) mode] are analyzed. The necessary time delay between the SHV and LDR modes for our radar was about 1–4 min. The data show that the areas of canted crystals from the LDR mode are larger than those from the SHV mode, thereby indicating that the LDR mode is more sensitive to canted ice cloud particles than the SHV mode. The data also demonstrate that the differential phase and correlation coefficient in the LDR mode are indicative of canted cloud crystals and that these variables often are more sensitive to canted crystals than the linear depolarization ratio studied earlier. Rapidly scanning radars such as those with a phased array antenna could operate sequentially in the SHV and LDR modes and thus better detect cloud volumes characterized by enhanced electric fields.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JTECH-D-18-0022.1</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0739-0572 |
ispartof | Journal of atmospheric and oceanic technology, 2019-01, Vol.36 (1), p.151-159 |
issn | 0739-0572 1520-0426 |
language | eng |
recordid | cdi_proquest_journals_2390200644 |
source | American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Antenna arrays Aviation Cloud particles Correlation coefficient Correlation coefficients Crystals Depolarization Electric field Electric fields Filing Ice clouds Ice particles Lightning Modes Noise Phased arrays Polarization Radar Radar data Satellite communications Vertical polarization |
title | Electrified Cloud Areas Observed in the SHV and LDR Radar Modes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A03%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrified%20Cloud%20Areas%20Observed%20in%20the%20SHV%20and%20LDR%20Radar%20Modes&rft.jtitle=Journal%20of%20atmospheric%20and%20oceanic%20technology&rft.au=Melnikov,%20Valery&rft.date=2019-01&rft.volume=36&rft.issue=1&rft.spage=151&rft.epage=159&rft.pages=151-159&rft.issn=0739-0572&rft.eissn=1520-0426&rft_id=info:doi/10.1175/JTECH-D-18-0022.1&rft_dat=%3Cproquest_cross%3E2390200644%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390200644&rft_id=info:pmid/&rfr_iscdi=true |