Analysis of hydrogen permeation tests considering two different modelling approaches for grain boundary trapping in iron

The electrochemical permeation test is one of the most used methods for characterising hydrogen diffusion in metals. The flux of hydrogen atoms registered in the oxidation cell might be fitted to obtain apparent diffusivities. The magnitude of this coefficient has a decisive influence on the kinetic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fracture 2020-05, Vol.223 (1-2), p.17-35
Hauptverfasser: Díaz, A., Cuesta, I. I., Martinez-Pañeda, E., Alegre, J. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue 1-2
container_start_page 17
container_title International journal of fracture
container_volume 223
creator Díaz, A.
Cuesta, I. I.
Martinez-Pañeda, E.
Alegre, J. M.
description The electrochemical permeation test is one of the most used methods for characterising hydrogen diffusion in metals. The flux of hydrogen atoms registered in the oxidation cell might be fitted to obtain apparent diffusivities. The magnitude of this coefficient has a decisive influence on the kinetics of fracture or fatigue phenomena assisted by hydrogen and depends largely on hydrogen retention in microstructural traps. In order to improve the numerical fitting of diffusion coefficients, a permeation test has been reproduced using FEM simulations considering two approaches: a continuum 1D model in which the trap density, binding energy and the input lattice concentrations are critical variables and a polycrystalline model where trapping at grain boundaries is simulated explicitly including a segregation factor and a diffusion coefficient different from that of the interior of the grain. Results show that the continuum model captures trapping delay, but it should be modified to model the trapping influence on the steady state flux. Permeation behaviour might be classified according to different regimes depending on deviation from Fickian diffusion. Polycrystalline synthetic permeation shows a strong influence of segregation on output flux magnitude. This approach is able to simulate also the short-circuit diffusion phenomenon. The comparison between different grain sizes and grain boundary thicknesses by means of the fitted apparent diffusivity shows the relationships between the registered flux and the characteristic parameters of traps.
doi_str_mv 10.1007/s10704-019-00411-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2390049221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2390049221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-258e9983774a2f5d6eeeb8e562bce143a9f92f7f791fc4749de48d23b753f1503</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB19G82jTLYfAFghtdh7S9menQSWrSQeffm1rBnasL955zOPdD6JrRW0apukuMKioJZZpQKhkj1QlasEIJwkslTtGCClUSLbk-Rxcp7SilWlVygb5W3vbH1CUcHN4e2xg24PEAcQ927ILHI6Qx4Sb41LUQO7_B42fAbeccRPAj3ocW-n7a22GIwTZbSNiFiDfRdh7X4eBbG494jPk-yfKyi8FfojNn-wRXv3OJ3h_u39ZP5OX18Xm9eiGNKMVIeFGB1pVQSlruirYEgLqCouR1A0wKq53mTjmlmWukkroFWbVc1KoQjhVULNHNnJvLfRzyM2YXDjE_nQwXOsPSnLOs4rOqiSGlCM4Msdvn3oZRMxE2M2GTCZsfwqbKJjGb0jCBgfgX_Y_rG-91gPo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390049221</pqid></control><display><type>article</type><title>Analysis of hydrogen permeation tests considering two different modelling approaches for grain boundary trapping in iron</title><source>Springer Nature - Complete Springer Journals</source><creator>Díaz, A. ; Cuesta, I. I. ; Martinez-Pañeda, E. ; Alegre, J. M.</creator><creatorcontrib>Díaz, A. ; Cuesta, I. I. ; Martinez-Pañeda, E. ; Alegre, J. M.</creatorcontrib><description>The electrochemical permeation test is one of the most used methods for characterising hydrogen diffusion in metals. The flux of hydrogen atoms registered in the oxidation cell might be fitted to obtain apparent diffusivities. The magnitude of this coefficient has a decisive influence on the kinetics of fracture or fatigue phenomena assisted by hydrogen and depends largely on hydrogen retention in microstructural traps. In order to improve the numerical fitting of diffusion coefficients, a permeation test has been reproduced using FEM simulations considering two approaches: a continuum 1D model in which the trap density, binding energy and the input lattice concentrations are critical variables and a polycrystalline model where trapping at grain boundaries is simulated explicitly including a segregation factor and a diffusion coefficient different from that of the interior of the grain. Results show that the continuum model captures trapping delay, but it should be modified to model the trapping influence on the steady state flux. Permeation behaviour might be classified according to different regimes depending on deviation from Fickian diffusion. Polycrystalline synthetic permeation shows a strong influence of segregation on output flux magnitude. This approach is able to simulate also the short-circuit diffusion phenomenon. The comparison between different grain sizes and grain boundary thicknesses by means of the fitted apparent diffusivity shows the relationships between the registered flux and the characteristic parameters of traps.</description><identifier>ISSN: 0376-9429</identifier><identifier>EISSN: 1573-2673</identifier><identifier>DOI: 10.1007/s10704-019-00411-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Civil Engineering ; Classical Mechanics ; Computer simulation ; Continuum modeling ; Crack propagation ; Diffusion ; Diffusion coefficient ; Fatigue failure ; Finite element method ; Flux ; Grain boundaries ; Grain size ; Hydrogen ; Hydrogen atoms ; Hydrogen permeation ; Materials Science ; Mechanical Engineering ; One dimensional models ; Original Paper ; Oxidation ; Penetration ; Polycrystals ; Short circuits ; Trapping</subject><ispartof>International journal of fracture, 2020-05, Vol.223 (1-2), p.17-35</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Springer Nature B.V. 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-258e9983774a2f5d6eeeb8e562bce143a9f92f7f791fc4749de48d23b753f1503</citedby><cites>FETCH-LOGICAL-c363t-258e9983774a2f5d6eeeb8e562bce143a9f92f7f791fc4749de48d23b753f1503</cites><orcidid>0000-0002-2344-1955</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10704-019-00411-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10704-019-00411-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Díaz, A.</creatorcontrib><creatorcontrib>Cuesta, I. I.</creatorcontrib><creatorcontrib>Martinez-Pañeda, E.</creatorcontrib><creatorcontrib>Alegre, J. M.</creatorcontrib><title>Analysis of hydrogen permeation tests considering two different modelling approaches for grain boundary trapping in iron</title><title>International journal of fracture</title><addtitle>Int J Fract</addtitle><description>The electrochemical permeation test is one of the most used methods for characterising hydrogen diffusion in metals. The flux of hydrogen atoms registered in the oxidation cell might be fitted to obtain apparent diffusivities. The magnitude of this coefficient has a decisive influence on the kinetics of fracture or fatigue phenomena assisted by hydrogen and depends largely on hydrogen retention in microstructural traps. In order to improve the numerical fitting of diffusion coefficients, a permeation test has been reproduced using FEM simulations considering two approaches: a continuum 1D model in which the trap density, binding energy and the input lattice concentrations are critical variables and a polycrystalline model where trapping at grain boundaries is simulated explicitly including a segregation factor and a diffusion coefficient different from that of the interior of the grain. Results show that the continuum model captures trapping delay, but it should be modified to model the trapping influence on the steady state flux. Permeation behaviour might be classified according to different regimes depending on deviation from Fickian diffusion. Polycrystalline synthetic permeation shows a strong influence of segregation on output flux magnitude. This approach is able to simulate also the short-circuit diffusion phenomenon. The comparison between different grain sizes and grain boundary thicknesses by means of the fitted apparent diffusivity shows the relationships between the registered flux and the characteristic parameters of traps.</description><subject>Automotive Engineering</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Civil Engineering</subject><subject>Classical Mechanics</subject><subject>Computer simulation</subject><subject>Continuum modeling</subject><subject>Crack propagation</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Fatigue failure</subject><subject>Finite element method</subject><subject>Flux</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Hydrogen</subject><subject>Hydrogen atoms</subject><subject>Hydrogen permeation</subject><subject>Materials Science</subject><subject>Mechanical Engineering</subject><subject>One dimensional models</subject><subject>Original Paper</subject><subject>Oxidation</subject><subject>Penetration</subject><subject>Polycrystals</subject><subject>Short circuits</subject><subject>Trapping</subject><issn>0376-9429</issn><issn>1573-2673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtLxDAUhYMoOI7-AVcB19G82jTLYfAFghtdh7S9menQSWrSQeffm1rBnasL955zOPdD6JrRW0apukuMKioJZZpQKhkj1QlasEIJwkslTtGCClUSLbk-Rxcp7SilWlVygb5W3vbH1CUcHN4e2xg24PEAcQ927ILHI6Qx4Sb41LUQO7_B42fAbeccRPAj3ocW-n7a22GIwTZbSNiFiDfRdh7X4eBbG494jPk-yfKyi8FfojNn-wRXv3OJ3h_u39ZP5OX18Xm9eiGNKMVIeFGB1pVQSlruirYEgLqCouR1A0wKq53mTjmlmWukkroFWbVc1KoQjhVULNHNnJvLfRzyM2YXDjE_nQwXOsPSnLOs4rOqiSGlCM4Msdvn3oZRMxE2M2GTCZsfwqbKJjGb0jCBgfgX_Y_rG-91gPo</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Díaz, A.</creator><creator>Cuesta, I. I.</creator><creator>Martinez-Pañeda, E.</creator><creator>Alegre, J. M.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-2344-1955</orcidid></search><sort><creationdate>20200501</creationdate><title>Analysis of hydrogen permeation tests considering two different modelling approaches for grain boundary trapping in iron</title><author>Díaz, A. ; Cuesta, I. I. ; Martinez-Pañeda, E. ; Alegre, J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-258e9983774a2f5d6eeeb8e562bce143a9f92f7f791fc4749de48d23b753f1503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automotive Engineering</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Civil Engineering</topic><topic>Classical Mechanics</topic><topic>Computer simulation</topic><topic>Continuum modeling</topic><topic>Crack propagation</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Fatigue failure</topic><topic>Finite element method</topic><topic>Flux</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Hydrogen</topic><topic>Hydrogen atoms</topic><topic>Hydrogen permeation</topic><topic>Materials Science</topic><topic>Mechanical Engineering</topic><topic>One dimensional models</topic><topic>Original Paper</topic><topic>Oxidation</topic><topic>Penetration</topic><topic>Polycrystals</topic><topic>Short circuits</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Díaz, A.</creatorcontrib><creatorcontrib>Cuesta, I. I.</creatorcontrib><creatorcontrib>Martinez-Pañeda, E.</creatorcontrib><creatorcontrib>Alegre, J. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of fracture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Díaz, A.</au><au>Cuesta, I. I.</au><au>Martinez-Pañeda, E.</au><au>Alegre, J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of hydrogen permeation tests considering two different modelling approaches for grain boundary trapping in iron</atitle><jtitle>International journal of fracture</jtitle><stitle>Int J Fract</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>223</volume><issue>1-2</issue><spage>17</spage><epage>35</epage><pages>17-35</pages><issn>0376-9429</issn><eissn>1573-2673</eissn><abstract>The electrochemical permeation test is one of the most used methods for characterising hydrogen diffusion in metals. The flux of hydrogen atoms registered in the oxidation cell might be fitted to obtain apparent diffusivities. The magnitude of this coefficient has a decisive influence on the kinetics of fracture or fatigue phenomena assisted by hydrogen and depends largely on hydrogen retention in microstructural traps. In order to improve the numerical fitting of diffusion coefficients, a permeation test has been reproduced using FEM simulations considering two approaches: a continuum 1D model in which the trap density, binding energy and the input lattice concentrations are critical variables and a polycrystalline model where trapping at grain boundaries is simulated explicitly including a segregation factor and a diffusion coefficient different from that of the interior of the grain. Results show that the continuum model captures trapping delay, but it should be modified to model the trapping influence on the steady state flux. Permeation behaviour might be classified according to different regimes depending on deviation from Fickian diffusion. Polycrystalline synthetic permeation shows a strong influence of segregation on output flux magnitude. This approach is able to simulate also the short-circuit diffusion phenomenon. The comparison between different grain sizes and grain boundary thicknesses by means of the fitted apparent diffusivity shows the relationships between the registered flux and the characteristic parameters of traps.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10704-019-00411-8</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-2344-1955</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0376-9429
ispartof International journal of fracture, 2020-05, Vol.223 (1-2), p.17-35
issn 0376-9429
1573-2673
language eng
recordid cdi_proquest_journals_2390049221
source Springer Nature - Complete Springer Journals
subjects Automotive Engineering
Characterization and Evaluation of Materials
Chemistry and Materials Science
Civil Engineering
Classical Mechanics
Computer simulation
Continuum modeling
Crack propagation
Diffusion
Diffusion coefficient
Fatigue failure
Finite element method
Flux
Grain boundaries
Grain size
Hydrogen
Hydrogen atoms
Hydrogen permeation
Materials Science
Mechanical Engineering
One dimensional models
Original Paper
Oxidation
Penetration
Polycrystals
Short circuits
Trapping
title Analysis of hydrogen permeation tests considering two different modelling approaches for grain boundary trapping in iron
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A11%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20hydrogen%20permeation%20tests%20considering%20two%20different%20modelling%20approaches%20for%20grain%20boundary%20trapping%20in%20iron&rft.jtitle=International%20journal%20of%20fracture&rft.au=D%C3%ADaz,%20A.&rft.date=2020-05-01&rft.volume=223&rft.issue=1-2&rft.spage=17&rft.epage=35&rft.pages=17-35&rft.issn=0376-9429&rft.eissn=1573-2673&rft_id=info:doi/10.1007/s10704-019-00411-8&rft_dat=%3Cproquest_cross%3E2390049221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390049221&rft_id=info:pmid/&rfr_iscdi=true