Analysis of hydrogen permeation tests considering two different modelling approaches for grain boundary trapping in iron
The electrochemical permeation test is one of the most used methods for characterising hydrogen diffusion in metals. The flux of hydrogen atoms registered in the oxidation cell might be fitted to obtain apparent diffusivities. The magnitude of this coefficient has a decisive influence on the kinetic...
Gespeichert in:
Veröffentlicht in: | International journal of fracture 2020-05, Vol.223 (1-2), p.17-35 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35 |
---|---|
container_issue | 1-2 |
container_start_page | 17 |
container_title | International journal of fracture |
container_volume | 223 |
creator | Díaz, A. Cuesta, I. I. Martinez-Pañeda, E. Alegre, J. M. |
description | The electrochemical permeation test is one of the most used methods for characterising hydrogen diffusion in metals. The flux of hydrogen atoms registered in the oxidation cell might be fitted to obtain apparent diffusivities. The magnitude of this coefficient has a decisive influence on the kinetics of fracture or fatigue phenomena assisted by hydrogen and depends largely on hydrogen retention in microstructural traps. In order to improve the numerical fitting of diffusion coefficients, a permeation test has been reproduced using FEM simulations considering two approaches: a continuum 1D model in which the trap density, binding energy and the input lattice concentrations are critical variables and a polycrystalline model where trapping at grain boundaries is simulated explicitly including a segregation factor and a diffusion coefficient different from that of the interior of the grain. Results show that the continuum model captures trapping delay, but it should be modified to model the trapping influence on the steady state flux. Permeation behaviour might be classified according to different regimes depending on deviation from Fickian diffusion. Polycrystalline synthetic permeation shows a strong influence of segregation on output flux magnitude. This approach is able to simulate also the short-circuit diffusion phenomenon. The comparison between different grain sizes and grain boundary thicknesses by means of the fitted apparent diffusivity shows the relationships between the registered flux and the characteristic parameters of traps. |
doi_str_mv | 10.1007/s10704-019-00411-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2390049221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2390049221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-258e9983774a2f5d6eeeb8e562bce143a9f92f7f791fc4749de48d23b753f1503</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB19G82jTLYfAFghtdh7S9menQSWrSQeffm1rBnasL955zOPdD6JrRW0apukuMKioJZZpQKhkj1QlasEIJwkslTtGCClUSLbk-Rxcp7SilWlVygb5W3vbH1CUcHN4e2xg24PEAcQ927ILHI6Qx4Sb41LUQO7_B42fAbeccRPAj3ocW-n7a22GIwTZbSNiFiDfRdh7X4eBbG494jPk-yfKyi8FfojNn-wRXv3OJ3h_u39ZP5OX18Xm9eiGNKMVIeFGB1pVQSlruirYEgLqCouR1A0wKq53mTjmlmWukkroFWbVc1KoQjhVULNHNnJvLfRzyM2YXDjE_nQwXOsPSnLOs4rOqiSGlCM4Msdvn3oZRMxE2M2GTCZsfwqbKJjGb0jCBgfgX_Y_rG-91gPo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390049221</pqid></control><display><type>article</type><title>Analysis of hydrogen permeation tests considering two different modelling approaches for grain boundary trapping in iron</title><source>Springer Nature - Complete Springer Journals</source><creator>Díaz, A. ; Cuesta, I. I. ; Martinez-Pañeda, E. ; Alegre, J. M.</creator><creatorcontrib>Díaz, A. ; Cuesta, I. I. ; Martinez-Pañeda, E. ; Alegre, J. M.</creatorcontrib><description>The electrochemical permeation test is one of the most used methods for characterising hydrogen diffusion in metals. The flux of hydrogen atoms registered in the oxidation cell might be fitted to obtain apparent diffusivities. The magnitude of this coefficient has a decisive influence on the kinetics of fracture or fatigue phenomena assisted by hydrogen and depends largely on hydrogen retention in microstructural traps. In order to improve the numerical fitting of diffusion coefficients, a permeation test has been reproduced using FEM simulations considering two approaches: a continuum 1D model in which the trap density, binding energy and the input lattice concentrations are critical variables and a polycrystalline model where trapping at grain boundaries is simulated explicitly including a segregation factor and a diffusion coefficient different from that of the interior of the grain. Results show that the continuum model captures trapping delay, but it should be modified to model the trapping influence on the steady state flux. Permeation behaviour might be classified according to different regimes depending on deviation from Fickian diffusion. Polycrystalline synthetic permeation shows a strong influence of segregation on output flux magnitude. This approach is able to simulate also the short-circuit diffusion phenomenon. The comparison between different grain sizes and grain boundary thicknesses by means of the fitted apparent diffusivity shows the relationships between the registered flux and the characteristic parameters of traps.</description><identifier>ISSN: 0376-9429</identifier><identifier>EISSN: 1573-2673</identifier><identifier>DOI: 10.1007/s10704-019-00411-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Civil Engineering ; Classical Mechanics ; Computer simulation ; Continuum modeling ; Crack propagation ; Diffusion ; Diffusion coefficient ; Fatigue failure ; Finite element method ; Flux ; Grain boundaries ; Grain size ; Hydrogen ; Hydrogen atoms ; Hydrogen permeation ; Materials Science ; Mechanical Engineering ; One dimensional models ; Original Paper ; Oxidation ; Penetration ; Polycrystals ; Short circuits ; Trapping</subject><ispartof>International journal of fracture, 2020-05, Vol.223 (1-2), p.17-35</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Springer Nature B.V. 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-258e9983774a2f5d6eeeb8e562bce143a9f92f7f791fc4749de48d23b753f1503</citedby><cites>FETCH-LOGICAL-c363t-258e9983774a2f5d6eeeb8e562bce143a9f92f7f791fc4749de48d23b753f1503</cites><orcidid>0000-0002-2344-1955</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10704-019-00411-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10704-019-00411-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Díaz, A.</creatorcontrib><creatorcontrib>Cuesta, I. I.</creatorcontrib><creatorcontrib>Martinez-Pañeda, E.</creatorcontrib><creatorcontrib>Alegre, J. M.</creatorcontrib><title>Analysis of hydrogen permeation tests considering two different modelling approaches for grain boundary trapping in iron</title><title>International journal of fracture</title><addtitle>Int J Fract</addtitle><description>The electrochemical permeation test is one of the most used methods for characterising hydrogen diffusion in metals. The flux of hydrogen atoms registered in the oxidation cell might be fitted to obtain apparent diffusivities. The magnitude of this coefficient has a decisive influence on the kinetics of fracture or fatigue phenomena assisted by hydrogen and depends largely on hydrogen retention in microstructural traps. In order to improve the numerical fitting of diffusion coefficients, a permeation test has been reproduced using FEM simulations considering two approaches: a continuum 1D model in which the trap density, binding energy and the input lattice concentrations are critical variables and a polycrystalline model where trapping at grain boundaries is simulated explicitly including a segregation factor and a diffusion coefficient different from that of the interior of the grain. Results show that the continuum model captures trapping delay, but it should be modified to model the trapping influence on the steady state flux. Permeation behaviour might be classified according to different regimes depending on deviation from Fickian diffusion. Polycrystalline synthetic permeation shows a strong influence of segregation on output flux magnitude. This approach is able to simulate also the short-circuit diffusion phenomenon. The comparison between different grain sizes and grain boundary thicknesses by means of the fitted apparent diffusivity shows the relationships between the registered flux and the characteristic parameters of traps.</description><subject>Automotive Engineering</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Civil Engineering</subject><subject>Classical Mechanics</subject><subject>Computer simulation</subject><subject>Continuum modeling</subject><subject>Crack propagation</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Fatigue failure</subject><subject>Finite element method</subject><subject>Flux</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Hydrogen</subject><subject>Hydrogen atoms</subject><subject>Hydrogen permeation</subject><subject>Materials Science</subject><subject>Mechanical Engineering</subject><subject>One dimensional models</subject><subject>Original Paper</subject><subject>Oxidation</subject><subject>Penetration</subject><subject>Polycrystals</subject><subject>Short circuits</subject><subject>Trapping</subject><issn>0376-9429</issn><issn>1573-2673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtLxDAUhYMoOI7-AVcB19G82jTLYfAFghtdh7S9menQSWrSQeffm1rBnasL955zOPdD6JrRW0apukuMKioJZZpQKhkj1QlasEIJwkslTtGCClUSLbk-Rxcp7SilWlVygb5W3vbH1CUcHN4e2xg24PEAcQ927ILHI6Qx4Sb41LUQO7_B42fAbeccRPAj3ocW-n7a22GIwTZbSNiFiDfRdh7X4eBbG494jPk-yfKyi8FfojNn-wRXv3OJ3h_u39ZP5OX18Xm9eiGNKMVIeFGB1pVQSlruirYEgLqCouR1A0wKq53mTjmlmWukkroFWbVc1KoQjhVULNHNnJvLfRzyM2YXDjE_nQwXOsPSnLOs4rOqiSGlCM4Msdvn3oZRMxE2M2GTCZsfwqbKJjGb0jCBgfgX_Y_rG-91gPo</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Díaz, A.</creator><creator>Cuesta, I. I.</creator><creator>Martinez-Pañeda, E.</creator><creator>Alegre, J. M.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-2344-1955</orcidid></search><sort><creationdate>20200501</creationdate><title>Analysis of hydrogen permeation tests considering two different modelling approaches for grain boundary trapping in iron</title><author>Díaz, A. ; Cuesta, I. I. ; Martinez-Pañeda, E. ; Alegre, J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-258e9983774a2f5d6eeeb8e562bce143a9f92f7f791fc4749de48d23b753f1503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automotive Engineering</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Civil Engineering</topic><topic>Classical Mechanics</topic><topic>Computer simulation</topic><topic>Continuum modeling</topic><topic>Crack propagation</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Fatigue failure</topic><topic>Finite element method</topic><topic>Flux</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Hydrogen</topic><topic>Hydrogen atoms</topic><topic>Hydrogen permeation</topic><topic>Materials Science</topic><topic>Mechanical Engineering</topic><topic>One dimensional models</topic><topic>Original Paper</topic><topic>Oxidation</topic><topic>Penetration</topic><topic>Polycrystals</topic><topic>Short circuits</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Díaz, A.</creatorcontrib><creatorcontrib>Cuesta, I. I.</creatorcontrib><creatorcontrib>Martinez-Pañeda, E.</creatorcontrib><creatorcontrib>Alegre, J. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of fracture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Díaz, A.</au><au>Cuesta, I. I.</au><au>Martinez-Pañeda, E.</au><au>Alegre, J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of hydrogen permeation tests considering two different modelling approaches for grain boundary trapping in iron</atitle><jtitle>International journal of fracture</jtitle><stitle>Int J Fract</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>223</volume><issue>1-2</issue><spage>17</spage><epage>35</epage><pages>17-35</pages><issn>0376-9429</issn><eissn>1573-2673</eissn><abstract>The electrochemical permeation test is one of the most used methods for characterising hydrogen diffusion in metals. The flux of hydrogen atoms registered in the oxidation cell might be fitted to obtain apparent diffusivities. The magnitude of this coefficient has a decisive influence on the kinetics of fracture or fatigue phenomena assisted by hydrogen and depends largely on hydrogen retention in microstructural traps. In order to improve the numerical fitting of diffusion coefficients, a permeation test has been reproduced using FEM simulations considering two approaches: a continuum 1D model in which the trap density, binding energy and the input lattice concentrations are critical variables and a polycrystalline model where trapping at grain boundaries is simulated explicitly including a segregation factor and a diffusion coefficient different from that of the interior of the grain. Results show that the continuum model captures trapping delay, but it should be modified to model the trapping influence on the steady state flux. Permeation behaviour might be classified according to different regimes depending on deviation from Fickian diffusion. Polycrystalline synthetic permeation shows a strong influence of segregation on output flux magnitude. This approach is able to simulate also the short-circuit diffusion phenomenon. The comparison between different grain sizes and grain boundary thicknesses by means of the fitted apparent diffusivity shows the relationships between the registered flux and the characteristic parameters of traps.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10704-019-00411-8</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-2344-1955</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0376-9429 |
ispartof | International journal of fracture, 2020-05, Vol.223 (1-2), p.17-35 |
issn | 0376-9429 1573-2673 |
language | eng |
recordid | cdi_proquest_journals_2390049221 |
source | Springer Nature - Complete Springer Journals |
subjects | Automotive Engineering Characterization and Evaluation of Materials Chemistry and Materials Science Civil Engineering Classical Mechanics Computer simulation Continuum modeling Crack propagation Diffusion Diffusion coefficient Fatigue failure Finite element method Flux Grain boundaries Grain size Hydrogen Hydrogen atoms Hydrogen permeation Materials Science Mechanical Engineering One dimensional models Original Paper Oxidation Penetration Polycrystals Short circuits Trapping |
title | Analysis of hydrogen permeation tests considering two different modelling approaches for grain boundary trapping in iron |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A11%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20hydrogen%20permeation%20tests%20considering%20two%20different%20modelling%20approaches%20for%20grain%20boundary%20trapping%20in%20iron&rft.jtitle=International%20journal%20of%20fracture&rft.au=D%C3%ADaz,%20A.&rft.date=2020-05-01&rft.volume=223&rft.issue=1-2&rft.spage=17&rft.epage=35&rft.pages=17-35&rft.issn=0376-9429&rft.eissn=1573-2673&rft_id=info:doi/10.1007/s10704-019-00411-8&rft_dat=%3Cproquest_cross%3E2390049221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390049221&rft_id=info:pmid/&rfr_iscdi=true |