Structure and electrical properties of Zn‐doped BiFeO3 films

BiFe1−xZnxO3 (x = 0, 0.5, 1, 1.5, 2 mol%) (BFZO) films were prepared on ITO/glass substrates by a sol‐gel method. The effects of different Zn contents on the structures and electrical properties of the BFZO films were investigated. From X‐ray diffraction (XRD), microstructure and X‐ray spectroscopy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of applied ceramic technology 2020-05, Vol.17 (3), p.1392-1399
Hauptverfasser: Shen, Peng, Zhang, Fengqing, Wang, Lingxu, Guo, Xiaodong, Zhao, Xuefeng, Liu, Huiying, Tian, Qingbo, Fan, Suhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1399
container_issue 3
container_start_page 1392
container_title International journal of applied ceramic technology
container_volume 17
creator Shen, Peng
Zhang, Fengqing
Wang, Lingxu
Guo, Xiaodong
Zhao, Xuefeng
Liu, Huiying
Tian, Qingbo
Fan, Suhua
description BiFe1−xZnxO3 (x = 0, 0.5, 1, 1.5, 2 mol%) (BFZO) films were prepared on ITO/glass substrates by a sol‐gel method. The effects of different Zn contents on the structures and electrical properties of the BFZO films were investigated. From X‐ray diffraction (XRD), microstructure and X‐ray spectroscopy (XPS) results, the BFZO films with a Zn content of 1 mol% showed a better crystal structure and grain development, and the Fe2+ and oxygen vacancy concentrations in this sample were the lowest among all the evaluated BFZO films. The P‐E hysteresis loop indicated that the BFZO films with 1 mol% Zn had the highest remanent polarization (2Pr), which was 82.4 μC/cm2, along with a coercive field (2Ec) of 887 kV/cm at the tested electric field of 857 kV/cm. The BFZO film with 1 mol% Zn had the lowest leakage current density, which was 3.54 × 10−7 A/cm2 at the tested electric field of 200 kV/cm. Both at high and low electric fields, the space charge‐limited current (SCLC) conduction mechanism was the main leakage mechanism. When the test frequency was 105 Hz, the dielectric constant was 133, and the dissipation factor was 0.015.
doi_str_mv 10.1111/ijac.13433
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2389951756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389951756</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2253-474922646d5a1c8868395db852ae811290d5e343a02b987a0bc611dd036738d53</originalsourceid><addsrcrecordid>eNqNkc1KxDAUhYMoOI5ufIKCS-mY_6YbYSyOjgzMQgVxE9IkhQydtqYpMjsfwWf0Scz84Nq7uYfLd-69cAC4RHCCYt24ldITRCghR2CEMkrTjEJ8HDWjPGUUv52Cs75fQbhl-AjcPgc_6DB4m6jGJLa2OninVZ10vu2sD872SVsl783P17eJE5PcuZldkqRy9bo_ByeVqnt7cehj8Dq7fyke08XyYV5MF2mHMSMpzWiOMafcMIW0EFyQnJlSMKysQAjn0DAbP1IQl7nIFCw1R8gYSHhGhGFkDK72e-NXH4Ptg1y1g2_iSYmJyHOGMsYjdb2nPm3ZVr12ttFWdt6tld9ICCGDiDKSRwVRpMX_6cIFFVzbFO3QhGhFB6ur7ebPg6DcpiC3KchdCnL-NC12ivwCL9p4uw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389951756</pqid></control><display><type>article</type><title>Structure and electrical properties of Zn‐doped BiFeO3 films</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Shen, Peng ; Zhang, Fengqing ; Wang, Lingxu ; Guo, Xiaodong ; Zhao, Xuefeng ; Liu, Huiying ; Tian, Qingbo ; Fan, Suhua</creator><creatorcontrib>Shen, Peng ; Zhang, Fengqing ; Wang, Lingxu ; Guo, Xiaodong ; Zhao, Xuefeng ; Liu, Huiying ; Tian, Qingbo ; Fan, Suhua</creatorcontrib><description>BiFe1−xZnxO3 (x = 0, 0.5, 1, 1.5, 2 mol%) (BFZO) films were prepared on ITO/glass substrates by a sol‐gel method. The effects of different Zn contents on the structures and electrical properties of the BFZO films were investigated. From X‐ray diffraction (XRD), microstructure and X‐ray spectroscopy (XPS) results, the BFZO films with a Zn content of 1 mol% showed a better crystal structure and grain development, and the Fe2+ and oxygen vacancy concentrations in this sample were the lowest among all the evaluated BFZO films. The P‐E hysteresis loop indicated that the BFZO films with 1 mol% Zn had the highest remanent polarization (2Pr), which was 82.4 μC/cm2, along with a coercive field (2Ec) of 887 kV/cm at the tested electric field of 857 kV/cm. The BFZO film with 1 mol% Zn had the lowest leakage current density, which was 3.54 × 10−7 A/cm2 at the tested electric field of 200 kV/cm. Both at high and low electric fields, the space charge‐limited current (SCLC) conduction mechanism was the main leakage mechanism. When the test frequency was 105 Hz, the dielectric constant was 133, and the dissipation factor was 0.015.</description><identifier>ISSN: 1546-542X</identifier><identifier>EISSN: 1744-7402</identifier><identifier>DOI: 10.1111/ijac.13433</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>BiFeO3 films ; Bismuth compounds ; Coercivity ; Crystal structure ; Dissipation factor ; Electric fields ; Electrical properties ; Glass substrates ; Hysteresis loops ; Lattice vacancies ; Leakage current ; Materials Science ; Materials Science, Ceramics ; Science &amp; Technology ; Sol-gel processes ; sol‐gel method ; Space charge ; Technology ; Zinc ; Zn doping</subject><ispartof>International journal of applied ceramic technology, 2020-05, Vol.17 (3), p.1392-1399</ispartof><rights>2019 The American Ceramic Society</rights><rights>Copyright © 2020 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000501453900001</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-p2253-474922646d5a1c8868395db852ae811290d5e343a02b987a0bc611dd036738d53</cites><orcidid>0000-0001-8405-6228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fijac.13433$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fijac.13433$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,28252,45578,45579</link.rule.ids></links><search><creatorcontrib>Shen, Peng</creatorcontrib><creatorcontrib>Zhang, Fengqing</creatorcontrib><creatorcontrib>Wang, Lingxu</creatorcontrib><creatorcontrib>Guo, Xiaodong</creatorcontrib><creatorcontrib>Zhao, Xuefeng</creatorcontrib><creatorcontrib>Liu, Huiying</creatorcontrib><creatorcontrib>Tian, Qingbo</creatorcontrib><creatorcontrib>Fan, Suhua</creatorcontrib><title>Structure and electrical properties of Zn‐doped BiFeO3 films</title><title>International journal of applied ceramic technology</title><addtitle>INT J APPL CERAM TEC</addtitle><description>BiFe1−xZnxO3 (x = 0, 0.5, 1, 1.5, 2 mol%) (BFZO) films were prepared on ITO/glass substrates by a sol‐gel method. The effects of different Zn contents on the structures and electrical properties of the BFZO films were investigated. From X‐ray diffraction (XRD), microstructure and X‐ray spectroscopy (XPS) results, the BFZO films with a Zn content of 1 mol% showed a better crystal structure and grain development, and the Fe2+ and oxygen vacancy concentrations in this sample were the lowest among all the evaluated BFZO films. The P‐E hysteresis loop indicated that the BFZO films with 1 mol% Zn had the highest remanent polarization (2Pr), which was 82.4 μC/cm2, along with a coercive field (2Ec) of 887 kV/cm at the tested electric field of 857 kV/cm. The BFZO film with 1 mol% Zn had the lowest leakage current density, which was 3.54 × 10−7 A/cm2 at the tested electric field of 200 kV/cm. Both at high and low electric fields, the space charge‐limited current (SCLC) conduction mechanism was the main leakage mechanism. When the test frequency was 105 Hz, the dielectric constant was 133, and the dissipation factor was 0.015.</description><subject>BiFeO3 films</subject><subject>Bismuth compounds</subject><subject>Coercivity</subject><subject>Crystal structure</subject><subject>Dissipation factor</subject><subject>Electric fields</subject><subject>Electrical properties</subject><subject>Glass substrates</subject><subject>Hysteresis loops</subject><subject>Lattice vacancies</subject><subject>Leakage current</subject><subject>Materials Science</subject><subject>Materials Science, Ceramics</subject><subject>Science &amp; Technology</subject><subject>Sol-gel processes</subject><subject>sol‐gel method</subject><subject>Space charge</subject><subject>Technology</subject><subject>Zinc</subject><subject>Zn doping</subject><issn>1546-542X</issn><issn>1744-7402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkc1KxDAUhYMoOI5ufIKCS-mY_6YbYSyOjgzMQgVxE9IkhQydtqYpMjsfwWf0Scz84Nq7uYfLd-69cAC4RHCCYt24ldITRCghR2CEMkrTjEJ8HDWjPGUUv52Cs75fQbhl-AjcPgc_6DB4m6jGJLa2OninVZ10vu2sD872SVsl783P17eJE5PcuZldkqRy9bo_ByeVqnt7cehj8Dq7fyke08XyYV5MF2mHMSMpzWiOMafcMIW0EFyQnJlSMKysQAjn0DAbP1IQl7nIFCw1R8gYSHhGhGFkDK72e-NXH4Ptg1y1g2_iSYmJyHOGMsYjdb2nPm3ZVr12ttFWdt6tld9ICCGDiDKSRwVRpMX_6cIFFVzbFO3QhGhFB6ur7ebPg6DcpiC3KchdCnL-NC12ivwCL9p4uw</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Shen, Peng</creator><creator>Zhang, Fengqing</creator><creator>Wang, Lingxu</creator><creator>Guo, Xiaodong</creator><creator>Zhao, Xuefeng</creator><creator>Liu, Huiying</creator><creator>Tian, Qingbo</creator><creator>Fan, Suhua</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-8405-6228</orcidid></search><sort><creationdate>202005</creationdate><title>Structure and electrical properties of Zn‐doped BiFeO3 films</title><author>Shen, Peng ; Zhang, Fengqing ; Wang, Lingxu ; Guo, Xiaodong ; Zhao, Xuefeng ; Liu, Huiying ; Tian, Qingbo ; Fan, Suhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2253-474922646d5a1c8868395db852ae811290d5e343a02b987a0bc611dd036738d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>BiFeO3 films</topic><topic>Bismuth compounds</topic><topic>Coercivity</topic><topic>Crystal structure</topic><topic>Dissipation factor</topic><topic>Electric fields</topic><topic>Electrical properties</topic><topic>Glass substrates</topic><topic>Hysteresis loops</topic><topic>Lattice vacancies</topic><topic>Leakage current</topic><topic>Materials Science</topic><topic>Materials Science, Ceramics</topic><topic>Science &amp; Technology</topic><topic>Sol-gel processes</topic><topic>sol‐gel method</topic><topic>Space charge</topic><topic>Technology</topic><topic>Zinc</topic><topic>Zn doping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Peng</creatorcontrib><creatorcontrib>Zhang, Fengqing</creatorcontrib><creatorcontrib>Wang, Lingxu</creatorcontrib><creatorcontrib>Guo, Xiaodong</creatorcontrib><creatorcontrib>Zhao, Xuefeng</creatorcontrib><creatorcontrib>Liu, Huiying</creatorcontrib><creatorcontrib>Tian, Qingbo</creatorcontrib><creatorcontrib>Fan, Suhua</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of applied ceramic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Peng</au><au>Zhang, Fengqing</au><au>Wang, Lingxu</au><au>Guo, Xiaodong</au><au>Zhao, Xuefeng</au><au>Liu, Huiying</au><au>Tian, Qingbo</au><au>Fan, Suhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and electrical properties of Zn‐doped BiFeO3 films</atitle><jtitle>International journal of applied ceramic technology</jtitle><stitle>INT J APPL CERAM TEC</stitle><date>2020-05</date><risdate>2020</risdate><volume>17</volume><issue>3</issue><spage>1392</spage><epage>1399</epage><pages>1392-1399</pages><issn>1546-542X</issn><eissn>1744-7402</eissn><abstract>BiFe1−xZnxO3 (x = 0, 0.5, 1, 1.5, 2 mol%) (BFZO) films were prepared on ITO/glass substrates by a sol‐gel method. The effects of different Zn contents on the structures and electrical properties of the BFZO films were investigated. From X‐ray diffraction (XRD), microstructure and X‐ray spectroscopy (XPS) results, the BFZO films with a Zn content of 1 mol% showed a better crystal structure and grain development, and the Fe2+ and oxygen vacancy concentrations in this sample were the lowest among all the evaluated BFZO films. The P‐E hysteresis loop indicated that the BFZO films with 1 mol% Zn had the highest remanent polarization (2Pr), which was 82.4 μC/cm2, along with a coercive field (2Ec) of 887 kV/cm at the tested electric field of 857 kV/cm. The BFZO film with 1 mol% Zn had the lowest leakage current density, which was 3.54 × 10−7 A/cm2 at the tested electric field of 200 kV/cm. Both at high and low electric fields, the space charge‐limited current (SCLC) conduction mechanism was the main leakage mechanism. When the test frequency was 105 Hz, the dielectric constant was 133, and the dissipation factor was 0.015.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><doi>10.1111/ijac.13433</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8405-6228</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1546-542X
ispartof International journal of applied ceramic technology, 2020-05, Vol.17 (3), p.1392-1399
issn 1546-542X
1744-7402
language eng
recordid cdi_proquest_journals_2389951756
source Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects BiFeO3 films
Bismuth compounds
Coercivity
Crystal structure
Dissipation factor
Electric fields
Electrical properties
Glass substrates
Hysteresis loops
Lattice vacancies
Leakage current
Materials Science
Materials Science, Ceramics
Science & Technology
Sol-gel processes
sol‐gel method
Space charge
Technology
Zinc
Zn doping
title Structure and electrical properties of Zn‐doped BiFeO3 films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T19%3A49%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20electrical%20properties%20of%20Zn%E2%80%90doped%20BiFeO3%20films&rft.jtitle=International%20journal%20of%20applied%20ceramic%20technology&rft.au=Shen,%20Peng&rft.date=2020-05&rft.volume=17&rft.issue=3&rft.spage=1392&rft.epage=1399&rft.pages=1392-1399&rft.issn=1546-542X&rft.eissn=1744-7402&rft_id=info:doi/10.1111/ijac.13433&rft_dat=%3Cproquest_webof%3E2389951756%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389951756&rft_id=info:pmid/&rfr_iscdi=true