Structure and electrical properties of Zn‐doped BiFeO3 films
BiFe1−xZnxO3 (x = 0, 0.5, 1, 1.5, 2 mol%) (BFZO) films were prepared on ITO/glass substrates by a sol‐gel method. The effects of different Zn contents on the structures and electrical properties of the BFZO films were investigated. From X‐ray diffraction (XRD), microstructure and X‐ray spectroscopy...
Gespeichert in:
Veröffentlicht in: | International journal of applied ceramic technology 2020-05, Vol.17 (3), p.1392-1399 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1399 |
---|---|
container_issue | 3 |
container_start_page | 1392 |
container_title | International journal of applied ceramic technology |
container_volume | 17 |
creator | Shen, Peng Zhang, Fengqing Wang, Lingxu Guo, Xiaodong Zhao, Xuefeng Liu, Huiying Tian, Qingbo Fan, Suhua |
description | BiFe1−xZnxO3 (x = 0, 0.5, 1, 1.5, 2 mol%) (BFZO) films were prepared on ITO/glass substrates by a sol‐gel method. The effects of different Zn contents on the structures and electrical properties of the BFZO films were investigated. From X‐ray diffraction (XRD), microstructure and X‐ray spectroscopy (XPS) results, the BFZO films with a Zn content of 1 mol% showed a better crystal structure and grain development, and the Fe2+ and oxygen vacancy concentrations in this sample were the lowest among all the evaluated BFZO films. The P‐E hysteresis loop indicated that the BFZO films with 1 mol% Zn had the highest remanent polarization (2Pr), which was 82.4 μC/cm2, along with a coercive field (2Ec) of 887 kV/cm at the tested electric field of 857 kV/cm. The BFZO film with 1 mol% Zn had the lowest leakage current density, which was 3.54 × 10−7 A/cm2 at the tested electric field of 200 kV/cm. Both at high and low electric fields, the space charge‐limited current (SCLC) conduction mechanism was the main leakage mechanism. When the test frequency was 105 Hz, the dielectric constant was 133, and the dissipation factor was 0.015. |
doi_str_mv | 10.1111/ijac.13433 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2389951756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389951756</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2253-474922646d5a1c8868395db852ae811290d5e343a02b987a0bc611dd036738d53</originalsourceid><addsrcrecordid>eNqNkc1KxDAUhYMoOI5ufIKCS-mY_6YbYSyOjgzMQgVxE9IkhQydtqYpMjsfwWf0Scz84Nq7uYfLd-69cAC4RHCCYt24ldITRCghR2CEMkrTjEJ8HDWjPGUUv52Cs75fQbhl-AjcPgc_6DB4m6jGJLa2OninVZ10vu2sD872SVsl783P17eJE5PcuZldkqRy9bo_ByeVqnt7cehj8Dq7fyke08XyYV5MF2mHMSMpzWiOMafcMIW0EFyQnJlSMKysQAjn0DAbP1IQl7nIFCw1R8gYSHhGhGFkDK72e-NXH4Ptg1y1g2_iSYmJyHOGMsYjdb2nPm3ZVr12ttFWdt6tld9ICCGDiDKSRwVRpMX_6cIFFVzbFO3QhGhFB6ur7ebPg6DcpiC3KchdCnL-NC12ivwCL9p4uw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389951756</pqid></control><display><type>article</type><title>Structure and electrical properties of Zn‐doped BiFeO3 films</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Shen, Peng ; Zhang, Fengqing ; Wang, Lingxu ; Guo, Xiaodong ; Zhao, Xuefeng ; Liu, Huiying ; Tian, Qingbo ; Fan, Suhua</creator><creatorcontrib>Shen, Peng ; Zhang, Fengqing ; Wang, Lingxu ; Guo, Xiaodong ; Zhao, Xuefeng ; Liu, Huiying ; Tian, Qingbo ; Fan, Suhua</creatorcontrib><description>BiFe1−xZnxO3 (x = 0, 0.5, 1, 1.5, 2 mol%) (BFZO) films were prepared on ITO/glass substrates by a sol‐gel method. The effects of different Zn contents on the structures and electrical properties of the BFZO films were investigated. From X‐ray diffraction (XRD), microstructure and X‐ray spectroscopy (XPS) results, the BFZO films with a Zn content of 1 mol% showed a better crystal structure and grain development, and the Fe2+ and oxygen vacancy concentrations in this sample were the lowest among all the evaluated BFZO films. The P‐E hysteresis loop indicated that the BFZO films with 1 mol% Zn had the highest remanent polarization (2Pr), which was 82.4 μC/cm2, along with a coercive field (2Ec) of 887 kV/cm at the tested electric field of 857 kV/cm. The BFZO film with 1 mol% Zn had the lowest leakage current density, which was 3.54 × 10−7 A/cm2 at the tested electric field of 200 kV/cm. Both at high and low electric fields, the space charge‐limited current (SCLC) conduction mechanism was the main leakage mechanism. When the test frequency was 105 Hz, the dielectric constant was 133, and the dissipation factor was 0.015.</description><identifier>ISSN: 1546-542X</identifier><identifier>EISSN: 1744-7402</identifier><identifier>DOI: 10.1111/ijac.13433</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>BiFeO3 films ; Bismuth compounds ; Coercivity ; Crystal structure ; Dissipation factor ; Electric fields ; Electrical properties ; Glass substrates ; Hysteresis loops ; Lattice vacancies ; Leakage current ; Materials Science ; Materials Science, Ceramics ; Science & Technology ; Sol-gel processes ; sol‐gel method ; Space charge ; Technology ; Zinc ; Zn doping</subject><ispartof>International journal of applied ceramic technology, 2020-05, Vol.17 (3), p.1392-1399</ispartof><rights>2019 The American Ceramic Society</rights><rights>Copyright © 2020 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000501453900001</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-p2253-474922646d5a1c8868395db852ae811290d5e343a02b987a0bc611dd036738d53</cites><orcidid>0000-0001-8405-6228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fijac.13433$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fijac.13433$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,28252,45578,45579</link.rule.ids></links><search><creatorcontrib>Shen, Peng</creatorcontrib><creatorcontrib>Zhang, Fengqing</creatorcontrib><creatorcontrib>Wang, Lingxu</creatorcontrib><creatorcontrib>Guo, Xiaodong</creatorcontrib><creatorcontrib>Zhao, Xuefeng</creatorcontrib><creatorcontrib>Liu, Huiying</creatorcontrib><creatorcontrib>Tian, Qingbo</creatorcontrib><creatorcontrib>Fan, Suhua</creatorcontrib><title>Structure and electrical properties of Zn‐doped BiFeO3 films</title><title>International journal of applied ceramic technology</title><addtitle>INT J APPL CERAM TEC</addtitle><description>BiFe1−xZnxO3 (x = 0, 0.5, 1, 1.5, 2 mol%) (BFZO) films were prepared on ITO/glass substrates by a sol‐gel method. The effects of different Zn contents on the structures and electrical properties of the BFZO films were investigated. From X‐ray diffraction (XRD), microstructure and X‐ray spectroscopy (XPS) results, the BFZO films with a Zn content of 1 mol% showed a better crystal structure and grain development, and the Fe2+ and oxygen vacancy concentrations in this sample were the lowest among all the evaluated BFZO films. The P‐E hysteresis loop indicated that the BFZO films with 1 mol% Zn had the highest remanent polarization (2Pr), which was 82.4 μC/cm2, along with a coercive field (2Ec) of 887 kV/cm at the tested electric field of 857 kV/cm. The BFZO film with 1 mol% Zn had the lowest leakage current density, which was 3.54 × 10−7 A/cm2 at the tested electric field of 200 kV/cm. Both at high and low electric fields, the space charge‐limited current (SCLC) conduction mechanism was the main leakage mechanism. When the test frequency was 105 Hz, the dielectric constant was 133, and the dissipation factor was 0.015.</description><subject>BiFeO3 films</subject><subject>Bismuth compounds</subject><subject>Coercivity</subject><subject>Crystal structure</subject><subject>Dissipation factor</subject><subject>Electric fields</subject><subject>Electrical properties</subject><subject>Glass substrates</subject><subject>Hysteresis loops</subject><subject>Lattice vacancies</subject><subject>Leakage current</subject><subject>Materials Science</subject><subject>Materials Science, Ceramics</subject><subject>Science & Technology</subject><subject>Sol-gel processes</subject><subject>sol‐gel method</subject><subject>Space charge</subject><subject>Technology</subject><subject>Zinc</subject><subject>Zn doping</subject><issn>1546-542X</issn><issn>1744-7402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkc1KxDAUhYMoOI5ufIKCS-mY_6YbYSyOjgzMQgVxE9IkhQydtqYpMjsfwWf0Scz84Nq7uYfLd-69cAC4RHCCYt24ldITRCghR2CEMkrTjEJ8HDWjPGUUv52Cs75fQbhl-AjcPgc_6DB4m6jGJLa2OninVZ10vu2sD872SVsl783P17eJE5PcuZldkqRy9bo_ByeVqnt7cehj8Dq7fyke08XyYV5MF2mHMSMpzWiOMafcMIW0EFyQnJlSMKysQAjn0DAbP1IQl7nIFCw1R8gYSHhGhGFkDK72e-NXH4Ptg1y1g2_iSYmJyHOGMsYjdb2nPm3ZVr12ttFWdt6tld9ICCGDiDKSRwVRpMX_6cIFFVzbFO3QhGhFB6ur7ebPg6DcpiC3KchdCnL-NC12ivwCL9p4uw</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Shen, Peng</creator><creator>Zhang, Fengqing</creator><creator>Wang, Lingxu</creator><creator>Guo, Xiaodong</creator><creator>Zhao, Xuefeng</creator><creator>Liu, Huiying</creator><creator>Tian, Qingbo</creator><creator>Fan, Suhua</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-8405-6228</orcidid></search><sort><creationdate>202005</creationdate><title>Structure and electrical properties of Zn‐doped BiFeO3 films</title><author>Shen, Peng ; Zhang, Fengqing ; Wang, Lingxu ; Guo, Xiaodong ; Zhao, Xuefeng ; Liu, Huiying ; Tian, Qingbo ; Fan, Suhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2253-474922646d5a1c8868395db852ae811290d5e343a02b987a0bc611dd036738d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>BiFeO3 films</topic><topic>Bismuth compounds</topic><topic>Coercivity</topic><topic>Crystal structure</topic><topic>Dissipation factor</topic><topic>Electric fields</topic><topic>Electrical properties</topic><topic>Glass substrates</topic><topic>Hysteresis loops</topic><topic>Lattice vacancies</topic><topic>Leakage current</topic><topic>Materials Science</topic><topic>Materials Science, Ceramics</topic><topic>Science & Technology</topic><topic>Sol-gel processes</topic><topic>sol‐gel method</topic><topic>Space charge</topic><topic>Technology</topic><topic>Zinc</topic><topic>Zn doping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Peng</creatorcontrib><creatorcontrib>Zhang, Fengqing</creatorcontrib><creatorcontrib>Wang, Lingxu</creatorcontrib><creatorcontrib>Guo, Xiaodong</creatorcontrib><creatorcontrib>Zhao, Xuefeng</creatorcontrib><creatorcontrib>Liu, Huiying</creatorcontrib><creatorcontrib>Tian, Qingbo</creatorcontrib><creatorcontrib>Fan, Suhua</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of applied ceramic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Peng</au><au>Zhang, Fengqing</au><au>Wang, Lingxu</au><au>Guo, Xiaodong</au><au>Zhao, Xuefeng</au><au>Liu, Huiying</au><au>Tian, Qingbo</au><au>Fan, Suhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and electrical properties of Zn‐doped BiFeO3 films</atitle><jtitle>International journal of applied ceramic technology</jtitle><stitle>INT J APPL CERAM TEC</stitle><date>2020-05</date><risdate>2020</risdate><volume>17</volume><issue>3</issue><spage>1392</spage><epage>1399</epage><pages>1392-1399</pages><issn>1546-542X</issn><eissn>1744-7402</eissn><abstract>BiFe1−xZnxO3 (x = 0, 0.5, 1, 1.5, 2 mol%) (BFZO) films were prepared on ITO/glass substrates by a sol‐gel method. The effects of different Zn contents on the structures and electrical properties of the BFZO films were investigated. From X‐ray diffraction (XRD), microstructure and X‐ray spectroscopy (XPS) results, the BFZO films with a Zn content of 1 mol% showed a better crystal structure and grain development, and the Fe2+ and oxygen vacancy concentrations in this sample were the lowest among all the evaluated BFZO films. The P‐E hysteresis loop indicated that the BFZO films with 1 mol% Zn had the highest remanent polarization (2Pr), which was 82.4 μC/cm2, along with a coercive field (2Ec) of 887 kV/cm at the tested electric field of 857 kV/cm. The BFZO film with 1 mol% Zn had the lowest leakage current density, which was 3.54 × 10−7 A/cm2 at the tested electric field of 200 kV/cm. Both at high and low electric fields, the space charge‐limited current (SCLC) conduction mechanism was the main leakage mechanism. When the test frequency was 105 Hz, the dielectric constant was 133, and the dissipation factor was 0.015.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><doi>10.1111/ijac.13433</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8405-6228</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1546-542X |
ispartof | International journal of applied ceramic technology, 2020-05, Vol.17 (3), p.1392-1399 |
issn | 1546-542X 1744-7402 |
language | eng |
recordid | cdi_proquest_journals_2389951756 |
source | Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | BiFeO3 films Bismuth compounds Coercivity Crystal structure Dissipation factor Electric fields Electrical properties Glass substrates Hysteresis loops Lattice vacancies Leakage current Materials Science Materials Science, Ceramics Science & Technology Sol-gel processes sol‐gel method Space charge Technology Zinc Zn doping |
title | Structure and electrical properties of Zn‐doped BiFeO3 films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T19%3A49%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20electrical%20properties%20of%20Zn%E2%80%90doped%20BiFeO3%20films&rft.jtitle=International%20journal%20of%20applied%20ceramic%20technology&rft.au=Shen,%20Peng&rft.date=2020-05&rft.volume=17&rft.issue=3&rft.spage=1392&rft.epage=1399&rft.pages=1392-1399&rft.issn=1546-542X&rft.eissn=1744-7402&rft_id=info:doi/10.1111/ijac.13433&rft_dat=%3Cproquest_webof%3E2389951756%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389951756&rft_id=info:pmid/&rfr_iscdi=true |