An Affordance-Based Online Review Analysis Framework

One of the main tasks of today's data-driven design is to learn customers' concerns from the feedback data posted on the internet, to drive smarter and more profitable decisions during product development. Feature-based opinion mining was first performed by the computer and design scientis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hou, Tianjun, Yannou, Bernard, Leroy, Yann, Poirson, Emilie
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2466
container_issue 1
container_start_page 2457
container_title
container_volume 1
creator Hou, Tianjun
Yannou, Bernard
Leroy, Yann
Poirson, Emilie
description One of the main tasks of today's data-driven design is to learn customers' concerns from the feedback data posted on the internet, to drive smarter and more profitable decisions during product development. Feature-based opinion mining was first performed by the computer and design scientists to analyse online product reviews. In order to provide more sophisticated customer feedback analyses and to understand in a deeper way customer concerns about products, the authors propose an affordance-based online review analysis framework. This framework allows understanding how and in what condition customers use their products, how user preferences change over years and how customers use the product innovatively. An empirical case study using the proposed approach is conducted with the online reviews of Kindle e-readers downloaded from amazon.com. A set of innovation leads and redesign paths are provided for the design of next-generation e-reader. This study suggests that bridging data analytics with classical models and methods in design engineering can bring success for data-driven design.
doi_str_mv 10.1017/dsi.2019.252
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2389780253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389780253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2502-db1b1caa7f79958cceaa3667839fc3e0e5e099f8753f70da395afc8c8d6c7703</originalsourceid><addsrcrecordid>eNpNkNFKwzAUhoMoOObufICCV4KtJ0nTJJd1OCcMBrL7cJYm2Nm1M3Ebe_u1TMSr83P4-DnnI-SeQkaByucq1hkDqjMm2BUZMcYgzXnOrv_lWzKJcQMAHEAXtBiRvGyT0vsuVNhal75gdFWybJu6dcmHO9TumJQtNqdYx2QWcOuOXfi6Izcem-gmv3NMVrPX1XSeLpZv79NykVomgKXVmq6pRZReai2UtQ6RF4VUXHvLHTjhQGuvpOBeQoVcC_RWWVUVVkrgY_J4qf3ExuxCvcVwMh3WZl4uzLADNjyV5wfasw8Xdhe6772LP2bT7UN_eTSMKy0VMMF76ulC2dDFGJz_q6VgBoumt2gGi6a3yM-PmGKB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2389780253</pqid></control><display><type>conference_proceeding</type><title>An Affordance-Based Online Review Analysis Framework</title><source>Cambridge University Press Wholly Gold Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hou, Tianjun ; Yannou, Bernard ; Leroy, Yann ; Poirson, Emilie</creator><creatorcontrib>Hou, Tianjun ; Yannou, Bernard ; Leroy, Yann ; Poirson, Emilie</creatorcontrib><description>One of the main tasks of today's data-driven design is to learn customers' concerns from the feedback data posted on the internet, to drive smarter and more profitable decisions during product development. Feature-based opinion mining was first performed by the computer and design scientists to analyse online product reviews. In order to provide more sophisticated customer feedback analyses and to understand in a deeper way customer concerns about products, the authors propose an affordance-based online review analysis framework. This framework allows understanding how and in what condition customers use their products, how user preferences change over years and how customers use the product innovatively. An empirical case study using the proposed approach is conducted with the online reviews of Kindle e-readers downloaded from amazon.com. A set of innovation leads and redesign paths are provided for the design of next-generation e-reader. This study suggests that bridging data analytics with classical models and methods in design engineering can bring success for data-driven design.</description><identifier>ISSN: 2220-4342</identifier><identifier>EISSN: 2220-4342</identifier><identifier>DOI: 10.1017/dsi.2019.252</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Artificial Intelligence ; Computer Aided Engineering ; Computer Science ; Customer feedback ; Customers ; Data mining ; Design engineering ; E-books ; Electronic commerce ; Empirical analysis ; Engineering Sciences ; Feedback ; Modeling and Simulation ; Other ; Product development ; Product reviews ; Redesign</subject><ispartof>Proceedings of the Design Society, 2019, Vol.1 (1), p.2457-2466</ispartof><rights>2019 This article is published under (http://creativecommons.org/licenses/by-nc-nd/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2502-db1b1caa7f79958cceaa3667839fc3e0e5e099f8753f70da395afc8c8d6c7703</citedby><cites>FETCH-LOGICAL-c2502-db1b1caa7f79958cceaa3667839fc3e0e5e099f8753f70da395afc8c8d6c7703</cites><orcidid>0000-0002-0666-8162 ; 0000-0003-4511-4450 ; 0000-0003-3722-8888</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,780,784,789,790,885,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02434244$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hou, Tianjun</creatorcontrib><creatorcontrib>Yannou, Bernard</creatorcontrib><creatorcontrib>Leroy, Yann</creatorcontrib><creatorcontrib>Poirson, Emilie</creatorcontrib><title>An Affordance-Based Online Review Analysis Framework</title><title>Proceedings of the Design Society</title><description>One of the main tasks of today's data-driven design is to learn customers' concerns from the feedback data posted on the internet, to drive smarter and more profitable decisions during product development. Feature-based opinion mining was first performed by the computer and design scientists to analyse online product reviews. In order to provide more sophisticated customer feedback analyses and to understand in a deeper way customer concerns about products, the authors propose an affordance-based online review analysis framework. This framework allows understanding how and in what condition customers use their products, how user preferences change over years and how customers use the product innovatively. An empirical case study using the proposed approach is conducted with the online reviews of Kindle e-readers downloaded from amazon.com. A set of innovation leads and redesign paths are provided for the design of next-generation e-reader. This study suggests that bridging data analytics with classical models and methods in design engineering can bring success for data-driven design.</description><subject>Artificial Intelligence</subject><subject>Computer Aided Engineering</subject><subject>Computer Science</subject><subject>Customer feedback</subject><subject>Customers</subject><subject>Data mining</subject><subject>Design engineering</subject><subject>E-books</subject><subject>Electronic commerce</subject><subject>Empirical analysis</subject><subject>Engineering Sciences</subject><subject>Feedback</subject><subject>Modeling and Simulation</subject><subject>Other</subject><subject>Product development</subject><subject>Product reviews</subject><subject>Redesign</subject><issn>2220-4342</issn><issn>2220-4342</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkNFKwzAUhoMoOObufICCV4KtJ0nTJJd1OCcMBrL7cJYm2Nm1M3Ebe_u1TMSr83P4-DnnI-SeQkaByucq1hkDqjMm2BUZMcYgzXnOrv_lWzKJcQMAHEAXtBiRvGyT0vsuVNhal75gdFWybJu6dcmHO9TumJQtNqdYx2QWcOuOXfi6Izcem-gmv3NMVrPX1XSeLpZv79NykVomgKXVmq6pRZReai2UtQ6RF4VUXHvLHTjhQGuvpOBeQoVcC_RWWVUVVkrgY_J4qf3ExuxCvcVwMh3WZl4uzLADNjyV5wfasw8Xdhe6772LP2bT7UN_eTSMKy0VMMF76ulC2dDFGJz_q6VgBoumt2gGi6a3yM-PmGKB</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Hou, Tianjun</creator><creator>Yannou, Bernard</creator><creator>Leroy, Yann</creator><creator>Poirson, Emilie</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0666-8162</orcidid><orcidid>https://orcid.org/0000-0003-4511-4450</orcidid><orcidid>https://orcid.org/0000-0003-3722-8888</orcidid></search><sort><creationdate>20190701</creationdate><title>An Affordance-Based Online Review Analysis Framework</title><author>Hou, Tianjun ; Yannou, Bernard ; Leroy, Yann ; Poirson, Emilie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2502-db1b1caa7f79958cceaa3667839fc3e0e5e099f8753f70da395afc8c8d6c7703</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Intelligence</topic><topic>Computer Aided Engineering</topic><topic>Computer Science</topic><topic>Customer feedback</topic><topic>Customers</topic><topic>Data mining</topic><topic>Design engineering</topic><topic>E-books</topic><topic>Electronic commerce</topic><topic>Empirical analysis</topic><topic>Engineering Sciences</topic><topic>Feedback</topic><topic>Modeling and Simulation</topic><topic>Other</topic><topic>Product development</topic><topic>Product reviews</topic><topic>Redesign</topic><toplevel>online_resources</toplevel><creatorcontrib>Hou, Tianjun</creatorcontrib><creatorcontrib>Yannou, Bernard</creatorcontrib><creatorcontrib>Leroy, Yann</creatorcontrib><creatorcontrib>Poirson, Emilie</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Tianjun</au><au>Yannou, Bernard</au><au>Leroy, Yann</au><au>Poirson, Emilie</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Affordance-Based Online Review Analysis Framework</atitle><btitle>Proceedings of the Design Society</btitle><date>2019-07-01</date><risdate>2019</risdate><volume>1</volume><issue>1</issue><spage>2457</spage><epage>2466</epage><pages>2457-2466</pages><issn>2220-4342</issn><eissn>2220-4342</eissn><abstract>One of the main tasks of today's data-driven design is to learn customers' concerns from the feedback data posted on the internet, to drive smarter and more profitable decisions during product development. Feature-based opinion mining was first performed by the computer and design scientists to analyse online product reviews. In order to provide more sophisticated customer feedback analyses and to understand in a deeper way customer concerns about products, the authors propose an affordance-based online review analysis framework. This framework allows understanding how and in what condition customers use their products, how user preferences change over years and how customers use the product innovatively. An empirical case study using the proposed approach is conducted with the online reviews of Kindle e-readers downloaded from amazon.com. A set of innovation leads and redesign paths are provided for the design of next-generation e-reader. This study suggests that bridging data analytics with classical models and methods in design engineering can bring success for data-driven design.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/dsi.2019.252</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0666-8162</orcidid><orcidid>https://orcid.org/0000-0003-4511-4450</orcidid><orcidid>https://orcid.org/0000-0003-3722-8888</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2220-4342
ispartof Proceedings of the Design Society, 2019, Vol.1 (1), p.2457-2466
issn 2220-4342
2220-4342
language eng
recordid cdi_proquest_journals_2389780253
source Cambridge University Press Wholly Gold Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Artificial Intelligence
Computer Aided Engineering
Computer Science
Customer feedback
Customers
Data mining
Design engineering
E-books
Electronic commerce
Empirical analysis
Engineering Sciences
Feedback
Modeling and Simulation
Other
Product development
Product reviews
Redesign
title An Affordance-Based Online Review Analysis Framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A41%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Affordance-Based%20Online%20Review%20Analysis%20Framework&rft.btitle=Proceedings%20of%20the%20Design%20Society&rft.au=Hou,%20Tianjun&rft.date=2019-07-01&rft.volume=1&rft.issue=1&rft.spage=2457&rft.epage=2466&rft.pages=2457-2466&rft.issn=2220-4342&rft.eissn=2220-4342&rft_id=info:doi/10.1017/dsi.2019.252&rft_dat=%3Cproquest_hal_p%3E2389780253%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389780253&rft_id=info:pmid/&rfr_iscdi=true