Highly Stretchable and Conductive Hybrid Fibers for High-performance Fibrous Electrodes and All-solid-state Supercapacitors

The development of lightweight, flexible, and stretchable energy storage systems is essential for state-of-the-art electronic devices. We propose a new and broad strategy to fabricate a stretchable and conductive GO/CNTs-TPU fiber electrode by direct wet spinning, from which a flexible fibrous super...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of polymer science 2020-05, Vol.38 (5), p.531-539
Hauptverfasser: Wu, Gui-Qing, Yang, Xin-Yu, Li, Jia-Hui, Sheng, Nan, Hou, Cheng-Yi, Li, Yao-Gang, Wang, Hong-Zhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 539
container_issue 5
container_start_page 531
container_title Chinese journal of polymer science
container_volume 38
creator Wu, Gui-Qing
Yang, Xin-Yu
Li, Jia-Hui
Sheng, Nan
Hou, Cheng-Yi
Li, Yao-Gang
Wang, Hong-Zhi
description The development of lightweight, flexible, and stretchable energy storage systems is essential for state-of-the-art electronic devices. We propose a new and broad strategy to fabricate a stretchable and conductive GO/CNTs-TPU fiber electrode by direct wet spinning, from which a flexible fibrous supercapacitor is fabricated. The fibrous electrode exhibits a high strength of 11.68 MPa, high conductivity of 342 S/cm, and high specific capacitances (21.8 mF/cm, 36.45 F/cm 3 , and 95 F/g). The specific capacitance of the assembled all-solid-state hybrid fiber-shaped supercapacitor reaches 14.3 F/cm 3 . After 5000 charge-discharge cycles, 97% of the capacitance of the hybrid supercapacitor is maintained. These high-strength electrochemical electrode materials could be potential candidates for applications in practical and large-scale energy storage systems and textile clothes.
doi_str_mv 10.1007/s10118-020-2381-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2389719713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389719713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-d643aa7bad76ee12cece435330c2a765482244f7287b0f8a68b611c08267875f3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvAczR_dpP0WEprhYKH6nnJZmfbLdtNTbJC8cubdQVPwjAzMO_3Bh5C94w-MkrVU2CUMU0op4QLzQi_QBOWiRmRnIpLNKE8l0RJNbtGNyEcKJWZytUEfa2b3b494230EO3elC1g01V44bqqt7H5BLw-l76p8KopwQdcO48HhpzAp_1oOgvDzbs-4GULNnpXQfgxmbctCa5tKhKiiYC3fYKsORnbROfDLbqqTRvg7ndO0ftq-bZYk83r88tiviFW5HkklcyEMao0lZIAjFuwkIlcCGq5UTLPNOdZViuuVUlrbaQuJWOWai6VVnktpuhh9D1599FDiMXB9b5LL4uU1UyxVCKp2Kiy3oXgoS5Ovjkafy4YLYaMizHjImU8cCy1KeIjE5K224H_c_4f-gZ2iH_B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389719713</pqid></control><display><type>article</type><title>Highly Stretchable and Conductive Hybrid Fibers for High-performance Fibrous Electrodes and All-solid-state Supercapacitors</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Wu, Gui-Qing ; Yang, Xin-Yu ; Li, Jia-Hui ; Sheng, Nan ; Hou, Cheng-Yi ; Li, Yao-Gang ; Wang, Hong-Zhi</creator><creatorcontrib>Wu, Gui-Qing ; Yang, Xin-Yu ; Li, Jia-Hui ; Sheng, Nan ; Hou, Cheng-Yi ; Li, Yao-Gang ; Wang, Hong-Zhi</creatorcontrib><description>The development of lightweight, flexible, and stretchable energy storage systems is essential for state-of-the-art electronic devices. We propose a new and broad strategy to fabricate a stretchable and conductive GO/CNTs-TPU fiber electrode by direct wet spinning, from which a flexible fibrous supercapacitor is fabricated. The fibrous electrode exhibits a high strength of 11.68 MPa, high conductivity of 342 S/cm, and high specific capacitances (21.8 mF/cm, 36.45 F/cm 3 , and 95 F/g). The specific capacitance of the assembled all-solid-state hybrid fiber-shaped supercapacitor reaches 14.3 F/cm 3 . After 5000 charge-discharge cycles, 97% of the capacitance of the hybrid supercapacitor is maintained. These high-strength electrochemical electrode materials could be potential candidates for applications in practical and large-scale energy storage systems and textile clothes.</description><identifier>ISSN: 0256-7679</identifier><identifier>EISSN: 1439-6203</identifier><identifier>DOI: 10.1007/s10118-020-2381-2</identifier><language>eng</language><publisher>Beijing: Chinese Chemical Society and Institute of Chemistry, CAS</publisher><subject>Capacitance ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Conductivity ; Electrode materials ; Electrodes ; Electronic devices ; Energy storage ; High strength ; Industrial Chemistry/Chemical Engineering ; Polymer Sciences ; Solid state ; Spinning (materials) ; Storage systems ; Supercapacitors ; Wet spinning</subject><ispartof>Chinese journal of polymer science, 2020-05, Vol.38 (5), p.531-539</ispartof><rights>Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-d643aa7bad76ee12cece435330c2a765482244f7287b0f8a68b611c08267875f3</citedby><cites>FETCH-LOGICAL-c355t-d643aa7bad76ee12cece435330c2a765482244f7287b0f8a68b611c08267875f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10118-020-2381-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10118-020-2381-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Wu, Gui-Qing</creatorcontrib><creatorcontrib>Yang, Xin-Yu</creatorcontrib><creatorcontrib>Li, Jia-Hui</creatorcontrib><creatorcontrib>Sheng, Nan</creatorcontrib><creatorcontrib>Hou, Cheng-Yi</creatorcontrib><creatorcontrib>Li, Yao-Gang</creatorcontrib><creatorcontrib>Wang, Hong-Zhi</creatorcontrib><title>Highly Stretchable and Conductive Hybrid Fibers for High-performance Fibrous Electrodes and All-solid-state Supercapacitors</title><title>Chinese journal of polymer science</title><addtitle>Chin J Polym Sci</addtitle><description>The development of lightweight, flexible, and stretchable energy storage systems is essential for state-of-the-art electronic devices. We propose a new and broad strategy to fabricate a stretchable and conductive GO/CNTs-TPU fiber electrode by direct wet spinning, from which a flexible fibrous supercapacitor is fabricated. The fibrous electrode exhibits a high strength of 11.68 MPa, high conductivity of 342 S/cm, and high specific capacitances (21.8 mF/cm, 36.45 F/cm 3 , and 95 F/g). The specific capacitance of the assembled all-solid-state hybrid fiber-shaped supercapacitor reaches 14.3 F/cm 3 . After 5000 charge-discharge cycles, 97% of the capacitance of the hybrid supercapacitor is maintained. These high-strength electrochemical electrode materials could be potential candidates for applications in practical and large-scale energy storage systems and textile clothes.</description><subject>Capacitance</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Conductivity</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electronic devices</subject><subject>Energy storage</subject><subject>High strength</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Polymer Sciences</subject><subject>Solid state</subject><subject>Spinning (materials)</subject><subject>Storage systems</subject><subject>Supercapacitors</subject><subject>Wet spinning</subject><issn>0256-7679</issn><issn>1439-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvAczR_dpP0WEprhYKH6nnJZmfbLdtNTbJC8cubdQVPwjAzMO_3Bh5C94w-MkrVU2CUMU0op4QLzQi_QBOWiRmRnIpLNKE8l0RJNbtGNyEcKJWZytUEfa2b3b494230EO3elC1g01V44bqqt7H5BLw-l76p8KopwQdcO48HhpzAp_1oOgvDzbs-4GULNnpXQfgxmbctCa5tKhKiiYC3fYKsORnbROfDLbqqTRvg7ndO0ftq-bZYk83r88tiviFW5HkklcyEMao0lZIAjFuwkIlcCGq5UTLPNOdZViuuVUlrbaQuJWOWai6VVnktpuhh9D1599FDiMXB9b5LL4uU1UyxVCKp2Kiy3oXgoS5Ovjkafy4YLYaMizHjImU8cCy1KeIjE5K224H_c_4f-gZ2iH_B</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Wu, Gui-Qing</creator><creator>Yang, Xin-Yu</creator><creator>Li, Jia-Hui</creator><creator>Sheng, Nan</creator><creator>Hou, Cheng-Yi</creator><creator>Li, Yao-Gang</creator><creator>Wang, Hong-Zhi</creator><general>Chinese Chemical Society and Institute of Chemistry, CAS</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200501</creationdate><title>Highly Stretchable and Conductive Hybrid Fibers for High-performance Fibrous Electrodes and All-solid-state Supercapacitors</title><author>Wu, Gui-Qing ; Yang, Xin-Yu ; Li, Jia-Hui ; Sheng, Nan ; Hou, Cheng-Yi ; Li, Yao-Gang ; Wang, Hong-Zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-d643aa7bad76ee12cece435330c2a765482244f7287b0f8a68b611c08267875f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Capacitance</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Conductivity</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electronic devices</topic><topic>Energy storage</topic><topic>High strength</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Polymer Sciences</topic><topic>Solid state</topic><topic>Spinning (materials)</topic><topic>Storage systems</topic><topic>Supercapacitors</topic><topic>Wet spinning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Gui-Qing</creatorcontrib><creatorcontrib>Yang, Xin-Yu</creatorcontrib><creatorcontrib>Li, Jia-Hui</creatorcontrib><creatorcontrib>Sheng, Nan</creatorcontrib><creatorcontrib>Hou, Cheng-Yi</creatorcontrib><creatorcontrib>Li, Yao-Gang</creatorcontrib><creatorcontrib>Wang, Hong-Zhi</creatorcontrib><collection>CrossRef</collection><jtitle>Chinese journal of polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Gui-Qing</au><au>Yang, Xin-Yu</au><au>Li, Jia-Hui</au><au>Sheng, Nan</au><au>Hou, Cheng-Yi</au><au>Li, Yao-Gang</au><au>Wang, Hong-Zhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Stretchable and Conductive Hybrid Fibers for High-performance Fibrous Electrodes and All-solid-state Supercapacitors</atitle><jtitle>Chinese journal of polymer science</jtitle><stitle>Chin J Polym Sci</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>38</volume><issue>5</issue><spage>531</spage><epage>539</epage><pages>531-539</pages><issn>0256-7679</issn><eissn>1439-6203</eissn><abstract>The development of lightweight, flexible, and stretchable energy storage systems is essential for state-of-the-art electronic devices. We propose a new and broad strategy to fabricate a stretchable and conductive GO/CNTs-TPU fiber electrode by direct wet spinning, from which a flexible fibrous supercapacitor is fabricated. The fibrous electrode exhibits a high strength of 11.68 MPa, high conductivity of 342 S/cm, and high specific capacitances (21.8 mF/cm, 36.45 F/cm 3 , and 95 F/g). The specific capacitance of the assembled all-solid-state hybrid fiber-shaped supercapacitor reaches 14.3 F/cm 3 . After 5000 charge-discharge cycles, 97% of the capacitance of the hybrid supercapacitor is maintained. These high-strength electrochemical electrode materials could be potential candidates for applications in practical and large-scale energy storage systems and textile clothes.</abstract><cop>Beijing</cop><pub>Chinese Chemical Society and Institute of Chemistry, CAS</pub><doi>10.1007/s10118-020-2381-2</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0256-7679
ispartof Chinese journal of polymer science, 2020-05, Vol.38 (5), p.531-539
issn 0256-7679
1439-6203
language eng
recordid cdi_proquest_journals_2389719713
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Capacitance
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Conductivity
Electrode materials
Electrodes
Electronic devices
Energy storage
High strength
Industrial Chemistry/Chemical Engineering
Polymer Sciences
Solid state
Spinning (materials)
Storage systems
Supercapacitors
Wet spinning
title Highly Stretchable and Conductive Hybrid Fibers for High-performance Fibrous Electrodes and All-solid-state Supercapacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A43%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Stretchable%20and%20Conductive%20Hybrid%20Fibers%20for%20High-performance%20Fibrous%20Electrodes%20and%20All-solid-state%20Supercapacitors&rft.jtitle=Chinese%20journal%20of%20polymer%20science&rft.au=Wu,%20Gui-Qing&rft.date=2020-05-01&rft.volume=38&rft.issue=5&rft.spage=531&rft.epage=539&rft.pages=531-539&rft.issn=0256-7679&rft.eissn=1439-6203&rft_id=info:doi/10.1007/s10118-020-2381-2&rft_dat=%3Cproquest_cross%3E2389719713%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389719713&rft_id=info:pmid/&rfr_iscdi=true