Predicting the corona for the 21 August 2017 total solar eclipse

The total solar eclipse that occurred on 21 August 2017 across the United States provided an opportunity to test a magnetohydrodynamic model of the solar corona driven by measured magnetic fields. We used a new heating model based on the dissipation of Alfvén waves, and a new energization mechanism...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature astronomy 2018-11, Vol.2 (11), p.913-921
Hauptverfasser: Mikić, Zoran, Downs, Cooper, Linker, Jon A., Caplan, Ronald M., Mackay, Duncan H., Upton, Lisa A., Riley, Pete, Lionello, Roberto, Török, Tibor, Titov, Viacheslav S., Wijaya, Janvier, Druckmüller, Miloslav, Pasachoff, Jay M., Carlos, Wendy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 921
container_issue 11
container_start_page 913
container_title Nature astronomy
container_volume 2
creator Mikić, Zoran
Downs, Cooper
Linker, Jon A.
Caplan, Ronald M.
Mackay, Duncan H.
Upton, Lisa A.
Riley, Pete
Lionello, Roberto
Török, Tibor
Titov, Viacheslav S.
Wijaya, Janvier
Druckmüller, Miloslav
Pasachoff, Jay M.
Carlos, Wendy
description The total solar eclipse that occurred on 21 August 2017 across the United States provided an opportunity to test a magnetohydrodynamic model of the solar corona driven by measured magnetic fields. We used a new heating model based on the dissipation of Alfvén waves, and a new energization mechanism to twist the magnetic field in filament channels. We predicted what the corona would look like one week before the eclipse. Here, we describe how this prediction was accomplished, and show that it compared favourably with observations of the eclipse in white light and extreme ultraviolet. The model allows us to understand the relationship of observed features, including streamers, coronal holes, prominences, polar plumes and thin rays, to the magnetic field. We show that the discrepancies between the model and observations arise from limitations in our ability to observe the Sun’s magnetic field. Predictions of this kind provide opportunities to improve the models, forging the path to improved space weather prediction. A 3D magnetohydrodynamic model forecasted the state of the solar corona during the eclipse that occurred on 21 August 2017, using observations taken ten days before the eclipse as boundary conditions. The agreement between the predicted images and those observed during the eclipse is very good.
doi_str_mv 10.1038/s41550-018-0562-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2389699426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389699426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-ccd160d6621c0a74cdee262df3e2a72132598131c9af14b47043076a1d26cce33</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouKz7A7wFPEczkzZtbi6LX7CgBz2HmKa1S23WJD34781aQS-eZgbej-Eh5Bz4JXBRX8UCypIzDjXjpURWHpEFClUxIaQ8_rOfklWMO845qhIEwIJcPwXX9Db1Y0fTm6PWBz8a2vrwfSLQ9dRNMVHkUNHkkxlo9IMJ1Nmh30d3Rk5aM0S3-plL8nJ787y5Z9vHu4fNests7knM2gYkb6REsNxUhW2cQ4lNKxyaCkFgqer8klWmheK1qHgheCUNNCitdUIsycWcuw_-Y3Ix6Z2fwpgrNYpaSaUKlFkFs8oGH2Nwrd6H_t2ETw1cH1jpmZXOrPSBlS6zB2dPzNqxc-E3-X_TF6LKaQ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389699426</pqid></control><display><type>article</type><title>Predicting the corona for the 21 August 2017 total solar eclipse</title><source>Springer Nature - Complete Springer Journals</source><creator>Mikić, Zoran ; Downs, Cooper ; Linker, Jon A. ; Caplan, Ronald M. ; Mackay, Duncan H. ; Upton, Lisa A. ; Riley, Pete ; Lionello, Roberto ; Török, Tibor ; Titov, Viacheslav S. ; Wijaya, Janvier ; Druckmüller, Miloslav ; Pasachoff, Jay M. ; Carlos, Wendy</creator><creatorcontrib>Mikić, Zoran ; Downs, Cooper ; Linker, Jon A. ; Caplan, Ronald M. ; Mackay, Duncan H. ; Upton, Lisa A. ; Riley, Pete ; Lionello, Roberto ; Török, Tibor ; Titov, Viacheslav S. ; Wijaya, Janvier ; Druckmüller, Miloslav ; Pasachoff, Jay M. ; Carlos, Wendy</creatorcontrib><description>The total solar eclipse that occurred on 21 August 2017 across the United States provided an opportunity to test a magnetohydrodynamic model of the solar corona driven by measured magnetic fields. We used a new heating model based on the dissipation of Alfvén waves, and a new energization mechanism to twist the magnetic field in filament channels. We predicted what the corona would look like one week before the eclipse. Here, we describe how this prediction was accomplished, and show that it compared favourably with observations of the eclipse in white light and extreme ultraviolet. The model allows us to understand the relationship of observed features, including streamers, coronal holes, prominences, polar plumes and thin rays, to the magnetic field. We show that the discrepancies between the model and observations arise from limitations in our ability to observe the Sun’s magnetic field. Predictions of this kind provide opportunities to improve the models, forging the path to improved space weather prediction. A 3D magnetohydrodynamic model forecasted the state of the solar corona during the eclipse that occurred on 21 August 2017, using observations taken ten days before the eclipse as boundary conditions. The agreement between the predicted images and those observed during the eclipse is very good.</description><identifier>ISSN: 2397-3366</identifier><identifier>EISSN: 2397-3366</identifier><identifier>DOI: 10.1038/s41550-018-0562-5</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/33/34 ; 639/705/1042 ; Astronomy ; Astrophysics and Cosmology ; Boundary conditions ; Magnetic fields ; Physics ; Physics and Astronomy ; Solar eclipses ; Weather forecasting</subject><ispartof>Nature astronomy, 2018-11, Vol.2 (11), p.913-921</ispartof><rights>The Author(s) 2018</rights><rights>The Author(s) 2018.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-ccd160d6621c0a74cdee262df3e2a72132598131c9af14b47043076a1d26cce33</cites><orcidid>0000-0002-3164-930X ; 0000-0002-2633-4290</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41550-018-0562-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41550-018-0562-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Mikić, Zoran</creatorcontrib><creatorcontrib>Downs, Cooper</creatorcontrib><creatorcontrib>Linker, Jon A.</creatorcontrib><creatorcontrib>Caplan, Ronald M.</creatorcontrib><creatorcontrib>Mackay, Duncan H.</creatorcontrib><creatorcontrib>Upton, Lisa A.</creatorcontrib><creatorcontrib>Riley, Pete</creatorcontrib><creatorcontrib>Lionello, Roberto</creatorcontrib><creatorcontrib>Török, Tibor</creatorcontrib><creatorcontrib>Titov, Viacheslav S.</creatorcontrib><creatorcontrib>Wijaya, Janvier</creatorcontrib><creatorcontrib>Druckmüller, Miloslav</creatorcontrib><creatorcontrib>Pasachoff, Jay M.</creatorcontrib><creatorcontrib>Carlos, Wendy</creatorcontrib><title>Predicting the corona for the 21 August 2017 total solar eclipse</title><title>Nature astronomy</title><addtitle>Nat Astron</addtitle><description>The total solar eclipse that occurred on 21 August 2017 across the United States provided an opportunity to test a magnetohydrodynamic model of the solar corona driven by measured magnetic fields. We used a new heating model based on the dissipation of Alfvén waves, and a new energization mechanism to twist the magnetic field in filament channels. We predicted what the corona would look like one week before the eclipse. Here, we describe how this prediction was accomplished, and show that it compared favourably with observations of the eclipse in white light and extreme ultraviolet. The model allows us to understand the relationship of observed features, including streamers, coronal holes, prominences, polar plumes and thin rays, to the magnetic field. We show that the discrepancies between the model and observations arise from limitations in our ability to observe the Sun’s magnetic field. Predictions of this kind provide opportunities to improve the models, forging the path to improved space weather prediction. A 3D magnetohydrodynamic model forecasted the state of the solar corona during the eclipse that occurred on 21 August 2017, using observations taken ten days before the eclipse as boundary conditions. The agreement between the predicted images and those observed during the eclipse is very good.</description><subject>639/33/34</subject><subject>639/705/1042</subject><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Boundary conditions</subject><subject>Magnetic fields</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solar eclipses</subject><subject>Weather forecasting</subject><issn>2397-3366</issn><issn>2397-3366</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LxDAQhoMouKz7A7wFPEczkzZtbi6LX7CgBz2HmKa1S23WJD34781aQS-eZgbej-Eh5Bz4JXBRX8UCypIzDjXjpURWHpEFClUxIaQ8_rOfklWMO845qhIEwIJcPwXX9Db1Y0fTm6PWBz8a2vrwfSLQ9dRNMVHkUNHkkxlo9IMJ1Nmh30d3Rk5aM0S3-plL8nJ787y5Z9vHu4fNests7knM2gYkb6REsNxUhW2cQ4lNKxyaCkFgqer8klWmheK1qHgheCUNNCitdUIsycWcuw_-Y3Ix6Z2fwpgrNYpaSaUKlFkFs8oGH2Nwrd6H_t2ETw1cH1jpmZXOrPSBlS6zB2dPzNqxc-E3-X_TF6LKaQ0</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Mikić, Zoran</creator><creator>Downs, Cooper</creator><creator>Linker, Jon A.</creator><creator>Caplan, Ronald M.</creator><creator>Mackay, Duncan H.</creator><creator>Upton, Lisa A.</creator><creator>Riley, Pete</creator><creator>Lionello, Roberto</creator><creator>Török, Tibor</creator><creator>Titov, Viacheslav S.</creator><creator>Wijaya, Janvier</creator><creator>Druckmüller, Miloslav</creator><creator>Pasachoff, Jay M.</creator><creator>Carlos, Wendy</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-3164-930X</orcidid><orcidid>https://orcid.org/0000-0002-2633-4290</orcidid></search><sort><creationdate>20181101</creationdate><title>Predicting the corona for the 21 August 2017 total solar eclipse</title><author>Mikić, Zoran ; Downs, Cooper ; Linker, Jon A. ; Caplan, Ronald M. ; Mackay, Duncan H. ; Upton, Lisa A. ; Riley, Pete ; Lionello, Roberto ; Török, Tibor ; Titov, Viacheslav S. ; Wijaya, Janvier ; Druckmüller, Miloslav ; Pasachoff, Jay M. ; Carlos, Wendy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-ccd160d6621c0a74cdee262df3e2a72132598131c9af14b47043076a1d26cce33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/33/34</topic><topic>639/705/1042</topic><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Boundary conditions</topic><topic>Magnetic fields</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solar eclipses</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mikić, Zoran</creatorcontrib><creatorcontrib>Downs, Cooper</creatorcontrib><creatorcontrib>Linker, Jon A.</creatorcontrib><creatorcontrib>Caplan, Ronald M.</creatorcontrib><creatorcontrib>Mackay, Duncan H.</creatorcontrib><creatorcontrib>Upton, Lisa A.</creatorcontrib><creatorcontrib>Riley, Pete</creatorcontrib><creatorcontrib>Lionello, Roberto</creatorcontrib><creatorcontrib>Török, Tibor</creatorcontrib><creatorcontrib>Titov, Viacheslav S.</creatorcontrib><creatorcontrib>Wijaya, Janvier</creatorcontrib><creatorcontrib>Druckmüller, Miloslav</creatorcontrib><creatorcontrib>Pasachoff, Jay M.</creatorcontrib><creatorcontrib>Carlos, Wendy</creatorcontrib><collection>CrossRef</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikić, Zoran</au><au>Downs, Cooper</au><au>Linker, Jon A.</au><au>Caplan, Ronald M.</au><au>Mackay, Duncan H.</au><au>Upton, Lisa A.</au><au>Riley, Pete</au><au>Lionello, Roberto</au><au>Török, Tibor</au><au>Titov, Viacheslav S.</au><au>Wijaya, Janvier</au><au>Druckmüller, Miloslav</au><au>Pasachoff, Jay M.</au><au>Carlos, Wendy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the corona for the 21 August 2017 total solar eclipse</atitle><jtitle>Nature astronomy</jtitle><stitle>Nat Astron</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>2</volume><issue>11</issue><spage>913</spage><epage>921</epage><pages>913-921</pages><issn>2397-3366</issn><eissn>2397-3366</eissn><abstract>The total solar eclipse that occurred on 21 August 2017 across the United States provided an opportunity to test a magnetohydrodynamic model of the solar corona driven by measured magnetic fields. We used a new heating model based on the dissipation of Alfvén waves, and a new energization mechanism to twist the magnetic field in filament channels. We predicted what the corona would look like one week before the eclipse. Here, we describe how this prediction was accomplished, and show that it compared favourably with observations of the eclipse in white light and extreme ultraviolet. The model allows us to understand the relationship of observed features, including streamers, coronal holes, prominences, polar plumes and thin rays, to the magnetic field. We show that the discrepancies between the model and observations arise from limitations in our ability to observe the Sun’s magnetic field. Predictions of this kind provide opportunities to improve the models, forging the path to improved space weather prediction. A 3D magnetohydrodynamic model forecasted the state of the solar corona during the eclipse that occurred on 21 August 2017, using observations taken ten days before the eclipse as boundary conditions. The agreement between the predicted images and those observed during the eclipse is very good.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41550-018-0562-5</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3164-930X</orcidid><orcidid>https://orcid.org/0000-0002-2633-4290</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2397-3366
ispartof Nature astronomy, 2018-11, Vol.2 (11), p.913-921
issn 2397-3366
2397-3366
language eng
recordid cdi_proquest_journals_2389699426
source Springer Nature - Complete Springer Journals
subjects 639/33/34
639/705/1042
Astronomy
Astrophysics and Cosmology
Boundary conditions
Magnetic fields
Physics
Physics and Astronomy
Solar eclipses
Weather forecasting
title Predicting the corona for the 21 August 2017 total solar eclipse
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A11%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20corona%20for%20the%2021%20August%202017%20total%20solar%20eclipse&rft.jtitle=Nature%20astronomy&rft.au=Miki%C4%87,%20Zoran&rft.date=2018-11-01&rft.volume=2&rft.issue=11&rft.spage=913&rft.epage=921&rft.pages=913-921&rft.issn=2397-3366&rft.eissn=2397-3366&rft_id=info:doi/10.1038/s41550-018-0562-5&rft_dat=%3Cproquest_cross%3E2389699426%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389699426&rft_id=info:pmid/&rfr_iscdi=true