Kinetic control of molecular assembly on surfaces
It is usually assumed that molecules deposited on surfaces assume the most thermodynamically stable structure. Here we show, by considering a model system of dihydroxybenzoic acid molecules on the (10.4) surface of calcite, that metastable molecular architectures may also be accessed by choosing a s...
Gespeichert in:
Veröffentlicht in: | Communications chemistry 2018-10, Vol.1 (1), Article 66 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Communications chemistry |
container_volume | 1 |
creator | Paris, Chiara Floris, Andrea Aeschlimann, Simon Neff, Julia Kling, Felix Kühnle, Angelika Kantorovich, Lev |
description | It is usually assumed that molecules deposited on surfaces assume the most thermodynamically stable structure. Here we show, by considering a model system of dihydroxybenzoic acid molecules on the (10.4) surface of calcite, that metastable molecular architectures may also be accessed by choosing a suitable initial state of the molecules which defines the observed transformation path. Moreover, we demonstrate that the latter is entirely controlled by kinetics rather than thermodynamics. We argue that molecules are deposited as dimers that undergo, upon increase of temperature, a series of structural transitions from clusters to ordered striped and then dense networks, and finally to a disordered structure. Combining high-resolution dynamic atomic force microscopy experiments and density-functional theory calculations, we provide a comprehensive analysis of the fundamental principles driving this sequence of transitions. Our study may open new avenues based on kinetic control as a promising strategy for achieving tailored molecular architectures on surfaces.
Kinetic control of self-assembly at interfaces offers a promising route to new two dimensional materials. Here high-resolution dynamic atomic force microscopy experiments combined with DFT calculations reveal the kinetic pathways by which 2,5-dihydroxybenzoic acid sequentially assembles on calcite. |
doi_str_mv | 10.1038/s42004-018-0069-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2389678358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389678358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-11bee5d9bda2fdec383c97bedd87834317b40d8518e3dac4822355213b42d9723</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EElXpD2CLxGx49nMSe0QVX6ISC8yWY7-gVmlc7GTovydVkGBhene45z7pMHYt4FYA6rusJIDiIDQHqAyHM7aQaAzHqjLnf_IlW-W8AwAJAutaL5h43fY0bH3hYz-k2BWxLfaxIz92LhUuZ9o33bGIfZHH1DpP-YpdtK7LtPq5S_bx-PC-fuabt6eX9f2GeyXLgQvREJXBNMHJNpBHjd7UDYWga40KRd0oCLoUmjA4r7SUWJZSYKNkMLXEJbuZdw8pfo2UB7uLY-qnl1aiNtW0UuqpJeaWTzHnRK09pO3epaMVYE9y7CzHTnLsSY6FiZEzk6du_0npd_l_6BukeWWs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389678358</pqid></control><display><type>article</type><title>Kinetic control of molecular assembly on surfaces</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Paris, Chiara ; Floris, Andrea ; Aeschlimann, Simon ; Neff, Julia ; Kling, Felix ; Kühnle, Angelika ; Kantorovich, Lev</creator><creatorcontrib>Paris, Chiara ; Floris, Andrea ; Aeschlimann, Simon ; Neff, Julia ; Kling, Felix ; Kühnle, Angelika ; Kantorovich, Lev</creatorcontrib><description>It is usually assumed that molecules deposited on surfaces assume the most thermodynamically stable structure. Here we show, by considering a model system of dihydroxybenzoic acid molecules on the (10.4) surface of calcite, that metastable molecular architectures may also be accessed by choosing a suitable initial state of the molecules which defines the observed transformation path. Moreover, we demonstrate that the latter is entirely controlled by kinetics rather than thermodynamics. We argue that molecules are deposited as dimers that undergo, upon increase of temperature, a series of structural transitions from clusters to ordered striped and then dense networks, and finally to a disordered structure. Combining high-resolution dynamic atomic force microscopy experiments and density-functional theory calculations, we provide a comprehensive analysis of the fundamental principles driving this sequence of transitions. Our study may open new avenues based on kinetic control as a promising strategy for achieving tailored molecular architectures on surfaces.
Kinetic control of self-assembly at interfaces offers a promising route to new two dimensional materials. Here high-resolution dynamic atomic force microscopy experiments combined with DFT calculations reveal the kinetic pathways by which 2,5-dihydroxybenzoic acid sequentially assembles on calcite.</description><identifier>ISSN: 2399-3669</identifier><identifier>EISSN: 2399-3669</identifier><identifier>DOI: 10.1038/s42004-018-0069-0</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1034/1038 ; 639/301/119/544 ; 639/925/357/341 ; Atomic force microscopy ; Calcite ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Density functional theory ; Dihydroxybenzoic acid ; Dimers ; High resolution ; Microscopy ; Molecular structure ; Self-assembly ; Two dimensional materials</subject><ispartof>Communications chemistry, 2018-10, Vol.1 (1), Article 66</ispartof><rights>The Author(s) 2018</rights><rights>The Author(s) 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-11bee5d9bda2fdec383c97bedd87834317b40d8518e3dac4822355213b42d9723</citedby><cites>FETCH-LOGICAL-c425t-11bee5d9bda2fdec383c97bedd87834317b40d8518e3dac4822355213b42d9723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27923,27924</link.rule.ids></links><search><creatorcontrib>Paris, Chiara</creatorcontrib><creatorcontrib>Floris, Andrea</creatorcontrib><creatorcontrib>Aeschlimann, Simon</creatorcontrib><creatorcontrib>Neff, Julia</creatorcontrib><creatorcontrib>Kling, Felix</creatorcontrib><creatorcontrib>Kühnle, Angelika</creatorcontrib><creatorcontrib>Kantorovich, Lev</creatorcontrib><title>Kinetic control of molecular assembly on surfaces</title><title>Communications chemistry</title><addtitle>Commun Chem</addtitle><description>It is usually assumed that molecules deposited on surfaces assume the most thermodynamically stable structure. Here we show, by considering a model system of dihydroxybenzoic acid molecules on the (10.4) surface of calcite, that metastable molecular architectures may also be accessed by choosing a suitable initial state of the molecules which defines the observed transformation path. Moreover, we demonstrate that the latter is entirely controlled by kinetics rather than thermodynamics. We argue that molecules are deposited as dimers that undergo, upon increase of temperature, a series of structural transitions from clusters to ordered striped and then dense networks, and finally to a disordered structure. Combining high-resolution dynamic atomic force microscopy experiments and density-functional theory calculations, we provide a comprehensive analysis of the fundamental principles driving this sequence of transitions. Our study may open new avenues based on kinetic control as a promising strategy for achieving tailored molecular architectures on surfaces.
Kinetic control of self-assembly at interfaces offers a promising route to new two dimensional materials. Here high-resolution dynamic atomic force microscopy experiments combined with DFT calculations reveal the kinetic pathways by which 2,5-dihydroxybenzoic acid sequentially assembles on calcite.</description><subject>639/301/1034/1038</subject><subject>639/301/119/544</subject><subject>639/925/357/341</subject><subject>Atomic force microscopy</subject><subject>Calcite</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Density functional theory</subject><subject>Dihydroxybenzoic acid</subject><subject>Dimers</subject><subject>High resolution</subject><subject>Microscopy</subject><subject>Molecular structure</subject><subject>Self-assembly</subject><subject>Two dimensional materials</subject><issn>2399-3669</issn><issn>2399-3669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kD1PwzAURS0EElXpD2CLxGx49nMSe0QVX6ISC8yWY7-gVmlc7GTovydVkGBhene45z7pMHYt4FYA6rusJIDiIDQHqAyHM7aQaAzHqjLnf_IlW-W8AwAJAutaL5h43fY0bH3hYz-k2BWxLfaxIz92LhUuZ9o33bGIfZHH1DpP-YpdtK7LtPq5S_bx-PC-fuabt6eX9f2GeyXLgQvREJXBNMHJNpBHjd7UDYWga40KRd0oCLoUmjA4r7SUWJZSYKNkMLXEJbuZdw8pfo2UB7uLY-qnl1aiNtW0UuqpJeaWTzHnRK09pO3epaMVYE9y7CzHTnLsSY6FiZEzk6du_0npd_l_6BukeWWs</recordid><startdate>20181022</startdate><enddate>20181022</enddate><creator>Paris, Chiara</creator><creator>Floris, Andrea</creator><creator>Aeschlimann, Simon</creator><creator>Neff, Julia</creator><creator>Kling, Felix</creator><creator>Kühnle, Angelika</creator><creator>Kantorovich, Lev</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181022</creationdate><title>Kinetic control of molecular assembly on surfaces</title><author>Paris, Chiara ; Floris, Andrea ; Aeschlimann, Simon ; Neff, Julia ; Kling, Felix ; Kühnle, Angelika ; Kantorovich, Lev</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-11bee5d9bda2fdec383c97bedd87834317b40d8518e3dac4822355213b42d9723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/301/1034/1038</topic><topic>639/301/119/544</topic><topic>639/925/357/341</topic><topic>Atomic force microscopy</topic><topic>Calcite</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Density functional theory</topic><topic>Dihydroxybenzoic acid</topic><topic>Dimers</topic><topic>High resolution</topic><topic>Microscopy</topic><topic>Molecular structure</topic><topic>Self-assembly</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paris, Chiara</creatorcontrib><creatorcontrib>Floris, Andrea</creatorcontrib><creatorcontrib>Aeschlimann, Simon</creatorcontrib><creatorcontrib>Neff, Julia</creatorcontrib><creatorcontrib>Kling, Felix</creatorcontrib><creatorcontrib>Kühnle, Angelika</creatorcontrib><creatorcontrib>Kantorovich, Lev</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Communications chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paris, Chiara</au><au>Floris, Andrea</au><au>Aeschlimann, Simon</au><au>Neff, Julia</au><au>Kling, Felix</au><au>Kühnle, Angelika</au><au>Kantorovich, Lev</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic control of molecular assembly on surfaces</atitle><jtitle>Communications chemistry</jtitle><stitle>Commun Chem</stitle><date>2018-10-22</date><risdate>2018</risdate><volume>1</volume><issue>1</issue><artnum>66</artnum><issn>2399-3669</issn><eissn>2399-3669</eissn><abstract>It is usually assumed that molecules deposited on surfaces assume the most thermodynamically stable structure. Here we show, by considering a model system of dihydroxybenzoic acid molecules on the (10.4) surface of calcite, that metastable molecular architectures may also be accessed by choosing a suitable initial state of the molecules which defines the observed transformation path. Moreover, we demonstrate that the latter is entirely controlled by kinetics rather than thermodynamics. We argue that molecules are deposited as dimers that undergo, upon increase of temperature, a series of structural transitions from clusters to ordered striped and then dense networks, and finally to a disordered structure. Combining high-resolution dynamic atomic force microscopy experiments and density-functional theory calculations, we provide a comprehensive analysis of the fundamental principles driving this sequence of transitions. Our study may open new avenues based on kinetic control as a promising strategy for achieving tailored molecular architectures on surfaces.
Kinetic control of self-assembly at interfaces offers a promising route to new two dimensional materials. Here high-resolution dynamic atomic force microscopy experiments combined with DFT calculations reveal the kinetic pathways by which 2,5-dihydroxybenzoic acid sequentially assembles on calcite.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s42004-018-0069-0</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2399-3669 |
ispartof | Communications chemistry, 2018-10, Vol.1 (1), Article 66 |
issn | 2399-3669 2399-3669 |
language | eng |
recordid | cdi_proquest_journals_2389678358 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | 639/301/1034/1038 639/301/119/544 639/925/357/341 Atomic force microscopy Calcite Chemistry Chemistry and Materials Science Chemistry/Food Science Density functional theory Dihydroxybenzoic acid Dimers High resolution Microscopy Molecular structure Self-assembly Two dimensional materials |
title | Kinetic control of molecular assembly on surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A12%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20control%20of%20molecular%20assembly%20on%20surfaces&rft.jtitle=Communications%20chemistry&rft.au=Paris,%20Chiara&rft.date=2018-10-22&rft.volume=1&rft.issue=1&rft.artnum=66&rft.issn=2399-3669&rft.eissn=2399-3669&rft_id=info:doi/10.1038/s42004-018-0069-0&rft_dat=%3Cproquest_cross%3E2389678358%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389678358&rft_id=info:pmid/&rfr_iscdi=true |