Graphene–ferroelectric transistors as complementary synapses for supervised learning in spiking neural network

The hardware design of supervised learning (SL) in spiking neural network (SNN) prefers 3-terminal memristive synapses, where the third terminal is used to impose supervise signals. In this work we address this demand by fabricating graphene transistor gated through organic ferroelectrics of polyvin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPJ 2D materials and applications 2019-08, Vol.3 (1), Article 31
Hauptverfasser: Chen, Yangyang, Zhou, Yue, Zhuge, Fuwei, Tian, Bobo, Yan, Mengge, Li, Yi, He, Yuhui, Miao, Xiang Shui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title NPJ 2D materials and applications
container_volume 3
creator Chen, Yangyang
Zhou, Yue
Zhuge, Fuwei
Tian, Bobo
Yan, Mengge
Li, Yi
He, Yuhui
Miao, Xiang Shui
description The hardware design of supervised learning (SL) in spiking neural network (SNN) prefers 3-terminal memristive synapses, where the third terminal is used to impose supervise signals. In this work we address this demand by fabricating graphene transistor gated through organic ferroelectrics of polyvinylidene fluoride. Through gate tuning not only is the nonvolatile and continuous change of graphene channel conductance demonstrated, but also the transition between electron-dominated and hole-dominated transport. By exploiting the adjustable bipolar characteristic, the graphene–ferroelectric transistor can be electrically reconfigured as potentiative or depressive synapse and in this way complementary synapses are realized. The complementary synapse and neuron circuit is then constructed to execute remote supervise method (ReSuMe) of SNN, and quick convergence to successful learning is found through network-level simulation when applying to a SL task of classifying 3 × 3-pixel images. The presented design of graphene–ferroelectric transistor-based complementary synapses and quantitative simulation may indicate a potential approach to hardware implementation of SL in SNN.
doi_str_mv 10.1038/s41699-019-0114-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2389676815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389676815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-d06895fd22612026cc42aad987de0be5e0076227dda6b84573d1b33fddadcedf3</originalsourceid><addsrcrecordid>eNp1UMtKxEAQDKLgovsB3gY8R-eRTJKjLLoKC170PMxmOmt2s5PYnSh78x_8Q7_ECRH04qGpaqiqpiuKLgS_Elzl15QIXRQxF-OIJNZH0UyqIoszoeTxH34azYm2nAel0EkqZlG3RNu9gIevj88KEFtooOyxLlmP1lNNfYvELLGy3XcN7MH3Fg-MDt52BMSqFhkNHeBbTeBYAxZ97Tes9oy6ejdSDwPaJkD_3uLuPDqpbEMw_8Gz6Pnu9mlxH68elw-Lm1VcqrToY8d1XqSVk1ILyaUuy0Ra64o8c8DXkALnmZYyc87qdZ6kmXJirVQVdleCq9RZdDnldti-DkC92bYD-nDSSJUXOtO5SINKTKoSWyKEynRY78OHRnAzdmumbk1ozIzdGh08cvJQ0PoN4G_y_6Zvq8CAuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389676815</pqid></control><display><type>article</type><title>Graphene–ferroelectric transistors as complementary synapses for supervised learning in spiking neural network</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><creator>Chen, Yangyang ; Zhou, Yue ; Zhuge, Fuwei ; Tian, Bobo ; Yan, Mengge ; Li, Yi ; He, Yuhui ; Miao, Xiang Shui</creator><creatorcontrib>Chen, Yangyang ; Zhou, Yue ; Zhuge, Fuwei ; Tian, Bobo ; Yan, Mengge ; Li, Yi ; He, Yuhui ; Miao, Xiang Shui</creatorcontrib><description>The hardware design of supervised learning (SL) in spiking neural network (SNN) prefers 3-terminal memristive synapses, where the third terminal is used to impose supervise signals. In this work we address this demand by fabricating graphene transistor gated through organic ferroelectrics of polyvinylidene fluoride. Through gate tuning not only is the nonvolatile and continuous change of graphene channel conductance demonstrated, but also the transition between electron-dominated and hole-dominated transport. By exploiting the adjustable bipolar characteristic, the graphene–ferroelectric transistor can be electrically reconfigured as potentiative or depressive synapse and in this way complementary synapses are realized. The complementary synapse and neuron circuit is then constructed to execute remote supervise method (ReSuMe) of SNN, and quick convergence to successful learning is found through network-level simulation when applying to a SL task of classifying 3 × 3-pixel images. The presented design of graphene–ferroelectric transistor-based complementary synapses and quantitative simulation may indicate a potential approach to hardware implementation of SL in SNN.</description><identifier>ISSN: 2397-7132</identifier><identifier>EISSN: 2397-7132</identifier><identifier>DOI: 10.1038/s41699-019-0114-6</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005/1007 ; 639/925/918/1052 ; Chemistry and Materials Science ; Circuits ; Computer simulation ; Ferroelectric materials ; Ferroelectricity ; Graphene ; Hardware ; Image classification ; Materials Science ; Nanotechnology ; Neural networks ; Polyvinylidene fluorides ; Resistance ; Semiconductor devices ; Spiking ; Supervised learning ; Surfaces and Interfaces ; Synapses ; Thin Films ; Transistors</subject><ispartof>NPJ 2D materials and applications, 2019-08, Vol.3 (1), Article 31</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-d06895fd22612026cc42aad987de0be5e0076227dda6b84573d1b33fddadcedf3</citedby><cites>FETCH-LOGICAL-c359t-d06895fd22612026cc42aad987de0be5e0076227dda6b84573d1b33fddadcedf3</cites><orcidid>0000-0002-4251-2755 ; 0000-0003-3673-2257 ; 0000-0002-0546-7692</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41699-019-0114-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41699-019-0114-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,27903,27904,41099,42168,51554</link.rule.ids></links><search><creatorcontrib>Chen, Yangyang</creatorcontrib><creatorcontrib>Zhou, Yue</creatorcontrib><creatorcontrib>Zhuge, Fuwei</creatorcontrib><creatorcontrib>Tian, Bobo</creatorcontrib><creatorcontrib>Yan, Mengge</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>He, Yuhui</creatorcontrib><creatorcontrib>Miao, Xiang Shui</creatorcontrib><title>Graphene–ferroelectric transistors as complementary synapses for supervised learning in spiking neural network</title><title>NPJ 2D materials and applications</title><addtitle>npj 2D Mater Appl</addtitle><description>The hardware design of supervised learning (SL) in spiking neural network (SNN) prefers 3-terminal memristive synapses, where the third terminal is used to impose supervise signals. In this work we address this demand by fabricating graphene transistor gated through organic ferroelectrics of polyvinylidene fluoride. Through gate tuning not only is the nonvolatile and continuous change of graphene channel conductance demonstrated, but also the transition between electron-dominated and hole-dominated transport. By exploiting the adjustable bipolar characteristic, the graphene–ferroelectric transistor can be electrically reconfigured as potentiative or depressive synapse and in this way complementary synapses are realized. The complementary synapse and neuron circuit is then constructed to execute remote supervise method (ReSuMe) of SNN, and quick convergence to successful learning is found through network-level simulation when applying to a SL task of classifying 3 × 3-pixel images. The presented design of graphene–ferroelectric transistor-based complementary synapses and quantitative simulation may indicate a potential approach to hardware implementation of SL in SNN.</description><subject>639/301/1005/1007</subject><subject>639/925/918/1052</subject><subject>Chemistry and Materials Science</subject><subject>Circuits</subject><subject>Computer simulation</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Graphene</subject><subject>Hardware</subject><subject>Image classification</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Neural networks</subject><subject>Polyvinylidene fluorides</subject><subject>Resistance</subject><subject>Semiconductor devices</subject><subject>Spiking</subject><subject>Supervised learning</subject><subject>Surfaces and Interfaces</subject><subject>Synapses</subject><subject>Thin Films</subject><subject>Transistors</subject><issn>2397-7132</issn><issn>2397-7132</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1UMtKxEAQDKLgovsB3gY8R-eRTJKjLLoKC170PMxmOmt2s5PYnSh78x_8Q7_ECRH04qGpaqiqpiuKLgS_Elzl15QIXRQxF-OIJNZH0UyqIoszoeTxH34azYm2nAel0EkqZlG3RNu9gIevj88KEFtooOyxLlmP1lNNfYvELLGy3XcN7MH3Fg-MDt52BMSqFhkNHeBbTeBYAxZ97Tes9oy6ejdSDwPaJkD_3uLuPDqpbEMw_8Gz6Pnu9mlxH68elw-Lm1VcqrToY8d1XqSVk1ILyaUuy0Ra64o8c8DXkALnmZYyc87qdZ6kmXJirVQVdleCq9RZdDnldti-DkC92bYD-nDSSJUXOtO5SINKTKoSWyKEynRY78OHRnAzdmumbk1ozIzdGh08cvJQ0PoN4G_y_6Zvq8CAuw</recordid><startdate>20190821</startdate><enddate>20190821</enddate><creator>Chen, Yangyang</creator><creator>Zhou, Yue</creator><creator>Zhuge, Fuwei</creator><creator>Tian, Bobo</creator><creator>Yan, Mengge</creator><creator>Li, Yi</creator><creator>He, Yuhui</creator><creator>Miao, Xiang Shui</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-4251-2755</orcidid><orcidid>https://orcid.org/0000-0003-3673-2257</orcidid><orcidid>https://orcid.org/0000-0002-0546-7692</orcidid></search><sort><creationdate>20190821</creationdate><title>Graphene–ferroelectric transistors as complementary synapses for supervised learning in spiking neural network</title><author>Chen, Yangyang ; Zhou, Yue ; Zhuge, Fuwei ; Tian, Bobo ; Yan, Mengge ; Li, Yi ; He, Yuhui ; Miao, Xiang Shui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-d06895fd22612026cc42aad987de0be5e0076227dda6b84573d1b33fddadcedf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/1005/1007</topic><topic>639/925/918/1052</topic><topic>Chemistry and Materials Science</topic><topic>Circuits</topic><topic>Computer simulation</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Graphene</topic><topic>Hardware</topic><topic>Image classification</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Neural networks</topic><topic>Polyvinylidene fluorides</topic><topic>Resistance</topic><topic>Semiconductor devices</topic><topic>Spiking</topic><topic>Supervised learning</topic><topic>Surfaces and Interfaces</topic><topic>Synapses</topic><topic>Thin Films</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yangyang</creatorcontrib><creatorcontrib>Zhou, Yue</creatorcontrib><creatorcontrib>Zhuge, Fuwei</creatorcontrib><creatorcontrib>Tian, Bobo</creatorcontrib><creatorcontrib>Yan, Mengge</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>He, Yuhui</creatorcontrib><creatorcontrib>Miao, Xiang Shui</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>NPJ 2D materials and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yangyang</au><au>Zhou, Yue</au><au>Zhuge, Fuwei</au><au>Tian, Bobo</au><au>Yan, Mengge</au><au>Li, Yi</au><au>He, Yuhui</au><au>Miao, Xiang Shui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene–ferroelectric transistors as complementary synapses for supervised learning in spiking neural network</atitle><jtitle>NPJ 2D materials and applications</jtitle><stitle>npj 2D Mater Appl</stitle><date>2019-08-21</date><risdate>2019</risdate><volume>3</volume><issue>1</issue><artnum>31</artnum><issn>2397-7132</issn><eissn>2397-7132</eissn><abstract>The hardware design of supervised learning (SL) in spiking neural network (SNN) prefers 3-terminal memristive synapses, where the third terminal is used to impose supervise signals. In this work we address this demand by fabricating graphene transistor gated through organic ferroelectrics of polyvinylidene fluoride. Through gate tuning not only is the nonvolatile and continuous change of graphene channel conductance demonstrated, but also the transition between electron-dominated and hole-dominated transport. By exploiting the adjustable bipolar characteristic, the graphene–ferroelectric transistor can be electrically reconfigured as potentiative or depressive synapse and in this way complementary synapses are realized. The complementary synapse and neuron circuit is then constructed to execute remote supervise method (ReSuMe) of SNN, and quick convergence to successful learning is found through network-level simulation when applying to a SL task of classifying 3 × 3-pixel images. The presented design of graphene–ferroelectric transistor-based complementary synapses and quantitative simulation may indicate a potential approach to hardware implementation of SL in SNN.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41699-019-0114-6</doi><orcidid>https://orcid.org/0000-0002-4251-2755</orcidid><orcidid>https://orcid.org/0000-0003-3673-2257</orcidid><orcidid>https://orcid.org/0000-0002-0546-7692</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2397-7132
ispartof NPJ 2D materials and applications, 2019-08, Vol.3 (1), Article 31
issn 2397-7132
2397-7132
language eng
recordid cdi_proquest_journals_2389676815
source Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals
subjects 639/301/1005/1007
639/925/918/1052
Chemistry and Materials Science
Circuits
Computer simulation
Ferroelectric materials
Ferroelectricity
Graphene
Hardware
Image classification
Materials Science
Nanotechnology
Neural networks
Polyvinylidene fluorides
Resistance
Semiconductor devices
Spiking
Supervised learning
Surfaces and Interfaces
Synapses
Thin Films
Transistors
title Graphene–ferroelectric transistors as complementary synapses for supervised learning in spiking neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A04%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%E2%80%93ferroelectric%20transistors%20as%20complementary%20synapses%20for%20supervised%20learning%20in%20spiking%20neural%20network&rft.jtitle=NPJ%202D%20materials%20and%20applications&rft.au=Chen,%20Yangyang&rft.date=2019-08-21&rft.volume=3&rft.issue=1&rft.artnum=31&rft.issn=2397-7132&rft.eissn=2397-7132&rft_id=info:doi/10.1038/s41699-019-0114-6&rft_dat=%3Cproquest_cross%3E2389676815%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389676815&rft_id=info:pmid/&rfr_iscdi=true